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OUTLOOK 
 • Introduction - Uniaxial Fatigue Analysis Process 

– Fatigue Models: Uniaxial Stress Based and Strain Based Fatigue 

– Damage Cumulation Rule, Cycles Definition and Counting, Stress Concentration and 
Notch Factors 

– Neuber and Glinka elastic-plastic stress calculation 

• Multiaxial (FEM assisted) Fatigue Analysis 

– Stress Tensors and Time History Assembling  

– Multiaxial Filtering (Racetrack) 

– Proportional and Non-Proportional Loadings 

– Elastic-Plastic Stress Tensor Time History calculation in case of Proportional Loading 

– Elastic-Plastic Stress Tensor Time History calculation in case of Non Proportional 
Loading 

– Cyclic Plasticity 

– Simplified approach: ‘Proportional Reduction’ 

– LCF Critical Plane Approaches with Smith-Watson-Topper, Brown-Miller, Fatemi-Socie 

– HCF Dang-Van Approach 
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FATIGUE IN METALLIC COMPONENTS 

• Fatigue is the progressive and localized structural damage that 
occurs when a material is subjected to cyclic loading. 

• If the cyclic stresses are above a certain threshold value 
(endurance limit) (for most materials used in lightweight 
structures the threshold is 0), microscopic cracks nucleate 
(generally at notches, where there are stress concentrations) 
after a certain number of cycles. 

• Once nucleated, the crack grows up to the critical size, at which 
the structure suddenly collapses (the remaining section cannot 
withstand statically the applied cyclic load). 

• The fatigue failure occurs at cyclic stress levels which are below 
the allowable static stress. 
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FATIGUE IN METALLIC COMPONENTS 



Salerno 2017 Multiaxial Fatigue 

6 

 

 

 

 

Stress or Strain  

Time History 

 

 

Fatigue  

Life 

 

FATIGUE IN METALLIC COMPONENTS 

FATIGUE 

MODEL 

(S-N or e-N) 

 

Cumulative 
Damage Rule 

 

 

Stress Concentration 
Notch Factor 

 

cycles damages 

 

Cycle Counting 

 

 

Scatter Factor 

 



Salerno 2017 Multiaxial Fatigue 

7 

FATIGUE MODELS 

• There are many fatigue methods that can be used. They belong 
to two different classes: 

 

– Stress based S-N  

  (High Cycle Fatigue - HCF) 

 

– Strain based e-N  

  (Low Cycle Fatigue - LCF) 

  (This is computationally more involving because 
elastic-plastic stress and strains have to be 
calculated) 
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FATIGUE MODELS 

• Stress based S-N curves and strain based e-N curves 

 

∆𝑆

2
= 𝐶 ∙ 𝑁𝑚     

Basquin Equation  

∆ε

2
=

𝜎𝑓′

𝐸
2𝑁𝑓

𝑏
+ 𝜀𝑓′ 2𝑁𝑓

𝑐
 

Coffin-Manson Equation 
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FATIGUE MODELS 

• In both cases the curves and/or input parameter (stress 
amplitude or strain amplitude) must be modified in order to take 
into account 

– Mean Stress Effects 

• Goodman, Gerber, Soderberg, Walker, ... in case of HCF 

• Smith-Watson-Topper, Morrow, Manson-Halford, ... in case of 
LCF 

– Temperature effects 

– Surface conditions 

– Loading modes (in case of S-N curves) 

– Size effects (in case of S-N curves) 

– Reliability factor 

– ... 
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FATIGUE MODELS 

• Whatever the method is (Stress based or Strain based), damage 
for each cycle is obtained by entering in the modified curve 
(Basquin or Coffin-Manson) with stress amplitude (for stress 
based method) or strain amplitude (for strain based method) 
and extracting a number of cycles which represents the Life 
related to that specific cycle, i.e. how many of those cycles 
(constant amplitude) the component survives before a crack is 
nucleated. 
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N1 
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DAMAGE CUMULATION RULE 
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• Miner’s Linear damage cumulation 

Crack Nucleation 
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DAMAGE CUMULATION RULE 
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CYCLES DEFINITION – CYCLE COUNTING 

• What is a cycle?  

• How a stress cycle is defined?  

• What is the physical meaning? 

 



Salerno 2017 Multiaxial Fatigue 

14 

CYCLES DEFINITION – CYCLE COUNTING 

• What is a cycle?  

• How a stress cycle is defined?  

• What is the physical meaning? 
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CYCLES DEFINITION – CYCLE COUNTING 

• Rheological Model 
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CYCLES DEFINITION – CYCLE COUNTING 
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CYCLES DEFINITION – CYCLE COUNTING 

• In order to avoid attacking the problem with an ‘incremental 
approach’ (which is computationally time consuming in case of 
long time histories), a method/tool is needed to extract cycles 
(i.e. closed loops) out of a Variable Amplitude spectrum. 

 

• The most popular tool is the Rainflow Cycle Counting (accepted 
world-wide as the most appropriate for extracting stress/load 
cycles for fatigue analyses,  the algorithm was developed 
by Endo and Matsuishi in 1968) 

 

• In order to reduce computational time, normally signals are 
filtered (e.g. Racetrack Filter) before being counted: removal of 
non-turning points and ‘small’ cycles (i.e. negligibly damaging) 
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CYCLES DEFINITION – CYCLE COUNTING 

• Two consecutive reversal points, i 
and i-1, within a sequence represent 
a peak and valley of a cycle if the 
conditions applies 

 
𝑆𝑖−1 < min 𝑆𝑖−2, 𝑆𝑖 ; 𝑆𝑖 > m𝑎𝑥 𝑆𝑖−1, 𝑆𝑖+1  

 

or 

 
𝑆𝑖−1 > max 𝑆𝑖−2, 𝑆𝑖 ; 𝑆𝑖 < m𝑖𝑛 𝑆𝑖−1, 𝑆𝑖+1  
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STRESS CONCENTRATION FACTORS 

• Geometric discontinuities in a structure such as notches, holes, 
shoulders, grooves, … are details where stress concentrations 
occur (stress raisers).  

• The Stress Concentration Factor Kt is the ratio between the local 
stress (maximum), at the stress raiser, and the far field 
(undisturbed), nominal stress 

 

𝐾𝑡 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 

 

• Because of higher localized stresses, fatigue failure develops 
from such details. 

• A collection of calculated stress concentration factors is provided 
by Peterson. 



Salerno 2017 Multiaxial Fatigue 

20 

STRESS CONCENTRATION FACTORS 
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STRESS CONCENTRATION FACTORS 

• Today, detailed Finite Element Models can be used to calculate 
numerically Kt for specific geometrical details 

 30.77 

𝑲𝒕 =
𝝈𝒎𝒂𝒙

𝝈𝒏𝒐𝒎𝒊𝒏𝒂𝒍
=

𝟑𝟎. 𝟕𝟕

𝟏𝟎
= 𝟑. 𝟎𝟕𝟕 

10 MPa Far field tension 

10 MPa Far field tension 

100 mm 

10 mm 

Nominal Stress 

Nominal Stress 

Notch Stress 

𝐾𝑡 =
30.77

10
= 3.077 
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NOTCH FACTORS 

• The use of theoretical Kt, coming from the assumption of ideal 
linear elastic materials, is not appropriate in case of applied 
alternating loads, i.e. fatigue. 

• The use of Effective Stress Concentration Factors, or Notch 
Factors Kf is more appropriate in such cases. 

• Defined as the Fatigue Strength ratio 

 

𝐾𝑓 =
𝑆𝑚𝑜𝑜𝑡ℎ 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑁𝑜𝑡𝑐ℎ𝑒𝑑 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
=

𝑆𝑒,𝑠𝑚𝑜𝑜𝑡ℎ

𝑆𝑒,𝑛𝑜𝑡𝑐ℎ𝑒𝑑
 

 

 

 

• It is experimentally calculated (at long lives, i.e. >106 cycles). 
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NOTCH FACTORS 

• Kf, differently from Kt, is not only geometry and load dependent, 
but also material dependent: 

 

𝐾𝑓 = 1 + 𝑞 𝐾𝑡 − 1 = 1 + 
𝐾𝑡 − 1

1 + 𝑎
𝑟 
      <  𝐾𝑡 

 

     r = notch tip radius,    a = material constant,   q = notch sensitivity factor 

 

• As a material length constant is involved, it implies that two 
scaled geometries have same Kt but different Kf 

• For a given material, the smaller the notch is (small r), the 
smaller the notch sensitivity is 
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NOTCH FACTORS 

• All dimensions of Plate B are 
scaled of 1/5 from Plate A 
BUT NOT the material 
dependent characteristic 
length a or r 

 

 Assume 𝑎 = 2.516 ∙ 10−2 𝑖𝑛𝑐ℎ 

 For both plates 𝐾𝑡 = 3.077  but: 

 For Plate A: 𝑞𝐴 =
1

1+𝑎
𝑟 
=  0.8867    

  𝐾𝑓𝐴 = 1 + 𝑞𝐴 ∙ 𝐾𝑡 − 1 = 2.842 

 For Plate B: 𝑞𝐵 =
1

1+𝑎
𝑟 
=  0.6103   

  𝐾𝑓𝐵 = 1 + 𝑞𝐵 ∙ 𝐾𝑡 − 1 = 2.267 

 

• It derives that Plate B has 
higher Fatigue Strength w.r.t. 
Plate A 

 

W = 100 mm 

r=5 mm=0.197 inch 

W = 20 mm 

r=1 mm=0.0394 inch 

Plate A Plate B = 1/5 scaled from Plate A 
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NOTCH FACTORS 

• A way to interpret the notch factor (from Dowling). 

 

𝐾𝑓 =
𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑢𝑡 𝑡𝑜 𝑥 = 𝑑

𝑆
=

𝜎𝑒

𝑆
 

• The stress controlling 
initiation of fatigue 
damage IS NOT the 
highest stress at the 
notch surface (x=0), 
but rather the 
somewhat lower value 
that is average out to a 
distance x=d. 
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NOTCH FACTORS 

• Scaled geometries: 
macroscopic dimensions 
are scaled; the material 
characteristic dimensions 
(e.g. grain size) are not 
scaled. 

• The ‘critical distance’ d 
stays constant and this 
drives the difference in 
resulting Notch factors. 

• Some methods focus on 
the critical distance, 
some others (e.g. FKM) 
focus on the stress 
gradient at the notch. 
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• A key step within the Strain-based approach is the 
determination of local elastic-plastic stresses occurring at the 
notch. 
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LOCAL ELASTIC-PLASTIC STRESS STATUS CALCULATION 
 

𝜎𝑒 

𝜎 

Notch elastic 
conditions 

Notch actual 
conditions 

• We calculate, with a FEM, generally 
the elastic stresses and strains  

   σ𝑒 and  ε𝑒 

 

• We MUST calculate the elastic-plastic 
stresses and strains 

   σ and ε 
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• The cyclic Stress-Strain curve can be modelled by means of the 
Ramberg-Osgood equation: 

𝜀 =
𝜎

𝐸
+

𝜎

𝐾′

1
𝑛′

 

 

• The equation for the Hysteresis Loops retains the same 
Ramberg-Osgood structure, with a factor 2: 

 

∆𝜀

2
=

∆𝜎

2𝐸
+

∆𝜎

2𝐾′

1
𝑛′

 

 

28 

LOCAL ELASTIC-PLASTIC STRESS STATUS CALCULATION 
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LOCAL ELASTIC-PLASTIC STRESS STATUS CALCULATION 
 

Ds𝑒 ∙ Dε𝑒= Dσ ∙ De 

σ𝑒 ∙ ε𝑒= σ ∙ e 

or in ‘hysteresis format’ 

De

2
=

Ds

2𝐸
+

Ds

2𝐾′

1
𝑛′

 

2 equations, 2 unknows: Dσ, De  

(being σ𝑒 ∙ ε𝑒 or Ds𝑒 ∙ Dε𝑒 known 

from the FEM solution)   
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• Neuber approach 
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LOCAL ELASTIC-PLASTIC STRESS STATUS CALCULATION 
 

Dσ𝑒 ∙ Dε𝑒                               =                         Dσ ∙ De 

Dσ ∙ De = Ds ∙ 2
Ds

2𝐸
+

Ds

2𝐾′

1
𝑛′

=
Ds2

𝐸
+ 2Ds

Ds

2𝐾′

1
𝑛′

 

Dσ𝑒 ∙ Dε𝑒 = Dσ𝑒 ∙
Dσ𝑒

𝐸
=

∆𝜎𝑒 2

𝐸
 

∆𝜎𝑒 2

𝐸
=

Ds2

𝐸
+ 2Ds

Ds

2𝐾′

1
𝑛′
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• E.S.E.D. Glinka approach 
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LOCAL ELASTIC-PLASTIC STRESS STATUS CALCULATION 
 

 ∆𝜎𝑒 ∙ 𝑑∆𝜀𝑒
∆𝜀𝑒

0

=  ∆𝜎 ∙ 𝑑∆𝜀
∆𝜀

0

 

 𝜎𝑒 ∙ 𝑑𝜀𝑒
𝜀𝑒

0

=  𝜎 ∙ 𝑑𝜀
𝜀

0

 

or in ‘hysteresis format’ 

De

2
=

Ds

2𝐸
+

Ds

2𝐾′

1
𝑛′

 

2 equations, 2 unknows: Dσ, De  

(being  ∆𝜎𝑒 ∙ 𝑑∆𝜀𝑒∆𝜀𝑒

0
 known from 

the FEM solution)   
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• E.S.E.D. Glinka approach 
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LOCAL ELASTIC-PLASTIC STRESS STATUS CALCULATION 
 

 ∆𝜎𝑒 ∙ 𝑑∆𝜀𝑒                       
∆𝜀𝑒

0

=                             ∆𝜎 ∙ 𝑑∆𝜀
∆𝜀

0

 

 ∆𝜎 ∙ 𝑑∆𝜀
∆𝜀

0

= 2 ∆𝜎 ∙ 𝑑
Ds

2𝐸
+

Ds

2𝐾′

1
𝑛′

=
Ds2

2𝐸
+

2Ds

𝑛′ + 1

Ds

2𝐾′

1
𝑛′∆𝜎

0

 

 ∆𝜎𝑒 ∙ 𝑑∆𝜀𝑒
∆𝜀𝑒

0

=  ∆𝜎𝑒 ∙ 𝑑
∆𝜎𝑒

𝐸
=

∆𝜎𝑒

0

∆𝜎𝑒 2

2𝐸
 

∆𝜎𝑒 2

2𝐸
=

Ds2

2𝐸
+

2Ds

𝑛′ + 1

Ds

2𝐾′

1
𝑛′

 



Salerno 2017 Multiaxial Fatigue 

• Neuber approach 

 

 

• E.S.E.D. Glinka approach 

 

 

 

• The two equations differ for the factor 2/(n’+1) in the Glinka 
approach form. Since 0<n’<1  2/(n’+1)<1. Smaller notch 
stress (and therefore smaller notch strain) is predicted with the 
Glinka approach, resulting in longer fatigue life compared to the 
Neuber’s rule. 
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LOCAL ELASTIC-PLASTIC STRESS STATUS CALCULATION 
 

∆𝜎𝑒 2

𝐸
=

Ds2

𝐸
+

4Ds

𝑛′ + 1

Ds

2𝐾′

1
𝑛′

 

∆𝜎𝑒 2

𝐸
=

Ds2

𝐸
+ 2Ds

Ds

2𝐾′

1
𝑛′
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• Generalizing: 

𝜎𝑒 2

𝐸
=

s2

𝐸
+ 𝛼 𝑈s

s

𝐾′

1
𝑛′

              
∆𝜎𝑒 2

𝐸
=

Ds2

𝐸
+ 2𝛼 𝑈Ds

Ds

2𝐾′

1
𝑛′

 

 

where  

 

𝛼 𝑈 =
𝛼𝑈 + 𝑛′ ∙ (2 − 𝛼𝑈)

1 + 𝑛′
 

  

The parameter 𝛼𝑈 spaninng between 1 and 2: 

 𝛼𝑈 = 1   →    𝛼 𝑈 = 1  →  Neuber rule  

 𝛼𝑈 = 2   →    𝛼 𝑈 =
2

1+𝑛′
  →  E.S.E.D. (Glinka) rule  

 34 

LOCAL ELASTIC-PLASTIC STRESS STATUS CALCULATION 
 

s 

ε 

monotonic cyclic 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 



Salerno 2017 Multiaxial Fatigue 

36 

MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

 LC 1 

LC 2 
LC 3 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

Nodes at the surface 

Internal nodes 

Gauss points 

Z’ 

X’ 

Y’ 

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

 

Z 

X 

Y 

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑥𝑦 𝜀𝑦𝑦 𝜀𝑦𝑧

𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑧𝑧
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

Z’ 

s 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

𝜎′ 𝐿𝐶1 =
𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶1

 

𝜎′ 𝐿𝐶2 =
𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶2

 

𝜎′ 𝐿𝐶3 =
𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶3

 

𝜎′(𝑡) 𝑡𝑜𝑡 =
𝜎′

𝑥𝑥(𝑡) 𝜎′𝑥𝑦(𝑡)

𝜎′𝑥𝑦(𝑡) 𝜎′𝑦𝑦(𝑡)
= 𝐶(𝑡)𝐿𝐶1 𝜎′ 𝐿𝐶1 + 𝐶(𝑡)𝐿𝐶2 𝜎′ 𝐿𝐶2 + 𝐶(𝑡)𝐿𝐶3 𝜎′ 𝐿𝐶3 = 

 

= 𝐶(𝑡)𝐿𝐶1

𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶1

+ 𝐶(𝑡)𝐿𝐶2

𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶2

+ 𝐶(𝑡)𝐿𝐶3

𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶3

=  𝐶(𝑡)𝐿𝐶𝑖 𝜎′ 𝐿𝐶𝑖
𝑖

 

𝐶(𝑡)𝐿𝐶1 

𝐶(𝑡)𝐿𝐶2 

𝐶(𝑡)𝐿𝐶3 

𝑡 

𝑡 

𝑡 

Z’ 

Y’ 

X’ 
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• Multiaxial Filtering – Racetrack Filter 

– It is derived from uniaxial racetrack filter 
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Originally inspired by slalom ski races, 
this amplitude filter idea involves 
drawing a ‘racetrack’ of width 2r 
bounded by upper and lower fences 
that have the same profile of the 
original sequence.  

Every time a skier racing in this 
racetrack needs to change direction, a 
reversal point is identified.  

Clearly, the track width 2r determines the number of points which will be 
eliminated and the number of reversals which remain: wider tracks filter out most 
of the original sequence points, while narrow tracks almost keep all the original 
reversals. 
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• Multiaxial Filtering – Racetrack Filter 

– It is derived from uniaxial racetrack filter 
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The algorithm of the racetrack filter is 
easier implemented through another 
physical analogy: a small peg P 
oscillating inside a slotted plate whose 
center is the point O.  

The range that the peg can oscillate 
inside the slot is 2r. both the peg and 
the slot are initially centered with the 
point A. 

During the path AB, the peg moves up until reaching the upper limit of the slotted 
plate, which then starts moving up.  

It is seen that the path BCD does not involve any translation of the slotted plate, 
meaning that points C and D can be filtered out. Then both the paths DE and EF 
involve translation of the slotted plate.  
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• Multiaxial Filtering – Racetrack Filter 

– Extension to Multiaxial time history 
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An hyper-sphere in the deviatoric 
space is defined. The radius defines 
the ‘resolution’ of the filter. 

The stress status defines the peg in 
the hyper-sphere. When the peg 
reaches the hyper-sphere surface and 
tries to move out of it, both the peg 
and the hyper-sphere translate 
altogether. 

The filtered history is composed by 
the initial point and all kinking and 
reversal points. 
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• Models and methods described in Part 1 relate to UNIAXIAL 
conditions 

– One stress or one strain (with its own time history),  

– The fatigue parameters is built with one stress or one strain 

 

• Dealing with Multiaxial Stress Tensors, the Fatigue analysis 
problem gets significantly more complex. 

• Depending on the nature of the applied loads, the Multiaxial 
problems are divided into two categories: 

– Multiaxial – Proportional Loadings 

– Multiaxial – Non-Proportional Loadings 
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• Multiaxial – Proportional Loadings. 

– This situation typically occurs when the structure is 
subjected to a single load, whose magnitude changes over 
time, or when the structure is subjected to a set of loads 
which change all in phase over time 
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• Multiaxial Proportional Loading Conditions (software LIFING) 
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Instant ti 

328.8 MPa 
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• Multiaxial Proportional Loading Conditions (software LIFING) 
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Instant ti+1 

102.3 MPa 
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• Multiaxial Proportional Loading Conditions (software LIFING) 
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Instant ti+2 

301.2 MPa 
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• Multiaxial – Non-Proportional Loadings. 

– This situation is the general one, when the structure is 
subjected to multiple loads which vary in time not in phase. 
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• Multiaxial – Non-Proportional Loadings. 

– If stress components are plotted in a chart, the points do not lay 
on a not straight line. 

– Similarly, stress principal directions and bi-axiality ratios change 
over time. 
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• Multiaxial Non-Proportional Loading Conditions (software LIFING) 
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Instant ti 

328.8 MPa 
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• Multiaxial Non-Proportional Loading Conditions (software LIFING) 
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Instant tk 

313.4 MPa 
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• Biaxiality Ratio is usually defined as the ratio between the 
Minimum and Maximum (in magnitude) Principal Stress. 

 

𝜎 =
𝜎1 0
0 𝜎2

                     𝜆 =
𝜎2

𝜎1
 

 

• By definition, the bi-axiality ratio 𝜆 spans between -1 and 1. 

• In case of uniaxial stress tensor, the bi-axiality 𝜆 ratio is zero. 

• What could be the implication of 𝜆 ≠ 0 in a calculation which 
neglects the presence of a second stress? (*) 

 

(*) This is the case, for example, when the analysis is carried out just looking at 
the Maximum Principal stress time history 

 

The principal stress 𝜎1 is the one 
characterized by highest 
magnitude 
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• What would happen if we run a fatigue analysis at three different  
notches loaded with the same time history of loads (Multiaxial 
Proportional Loading), where the following three reference stress 
tensors are given? 

 

 

100 
100 

−100 
−100 

200 

200 

200 0
0 0

 200 0
0 100

 200 0
0 −100

 

Case 1 Case 2 Case 3 

200 

200 

200 

200 
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• The fatigue analysis performed on the basis of the Max Principal 
Stress would deliver the same result for all the three cases. 
However if we calculate the Von Mises stresses we have: 

 

• Case 1. VM = 𝜎1
2 + 𝜎2

2 − 𝜎1 ∙ 𝜎2 = 200MPa 

 

• Case 2. VM = 𝜎1
2 + 𝜎2

2 − 𝜎1 ∙ 𝜎2 = 173.2MPa 

 

• Case 3. VM = 𝜎1
2 + 𝜎2

2 − 𝜎1 ∙ 𝜎2 = 264.6MPa 
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• Yield surfaces 

 

 

 

 

 

 

 

 

 

• Can the three cases be equally damaging? 

 

𝜎1 

𝜎2 

Case 1: 200 MPa  

Case 2: 173.2 MPa  

Case 3: 264.6 MPa  

VM = Fty 



Salerno 2017 Multiaxial Fatigue 

58 

MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

• The fatigue (crack initiation) analysis performed on the basis of 
the Max Principal Stress, inherits two fundamental errors: 

 

– (1) Assume the problem is Multiaxial Proportional Loading.  

• The impact of biaxiality ratio is ignored, meaning that: 

–CONSERVATIVE ERROR if l>0 

–UNCONSERVATIVE ERROR if l<0 

– (2) Assume the problem is Multiaxial Non-Proportional 
Loading. 

• The Maximum Principal Plane ROTATES over the time (and 
biaxiality ratio changes as well), meaning that: 

–At each instant in the time history the structure wants to crack at 
different planes, whereas the Maximum Principal is an ‘invariant’ 
(i.e. plane insensitive) 
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• The Non-Proportionality significantly increases the problem 
complexity, because of the following issues: 

–Solving Cyclic Plasticity (in case of LCF) with multiple stress 
components is way more complex (many methods are available), 
therefore the calculation of elastic-plastic stress-strains out of 
elastic FEM calculated stress-strains is a very complex issue. 

(Simple approaches are available in case of Proportional Loadings) 

 

–If we were able to calculate elastic-plastic stress-strains,  
defining cycles within a Stress Tensor time history where 
components change over the time not in phase is complex 
(Wang-Brown method is proposed in literature, however some 
analysis methods do not require special sequence counting). 

 

–What is the best fatigue parameter, combination of stress 
components, if multiple stress components vary over the time? 
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• Dowling and Hoffman-Seeger devised two similar methods to 
calculate elastic-plastic stress status for the Multiaxial 
Proportional Loadings problems. 

 

• Both are based on the modification of the Strain based method 
described in the previous chapters, in order to take into account 
the bi-axiality ratio. 

 

• It is demonstrated, with the application of such methods, that 
the presence of other additional has an impact on the fatigue 
results. 
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• Dowling method 

– This method assumes that both principal strain ratio and 
principal stress ratio (both called bi-axiality ratio) are 
constant  

 

                             𝜑 =
𝜀2

𝜀1 =
𝜀2
𝑒

𝜀1
𝑒  

                             l =
𝜎2

𝜎1
 =

𝜎2
𝑒

𝜎1
𝑒                 l, 𝜑 = 0          l, 𝜑 > 0          l, 𝜑 < 0 

 

– This is an approximation, because when loading in plastic 
range the two ratios are not constant. The implied error is 
proportional to the amount of plastic strain, therefore the 
error is small for small plastic strains. 
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• Dowling method 

– The superscript “e” denotes elastic values, the subscripts 1 
and 2 denote respectively Max Principal and Min Principal 
values: 

𝜎1 =
𝜎11 + 𝜎22

2
+

𝜎11 − 𝜎22

2

2

+ 𝜎12
2        𝜎2 =

𝜎11 + 𝜎22

2
−

𝜎11 − 𝜎22

2

2

+ 𝜎12
2  

𝜎𝑒𝑞 = 𝜎1
2 + 𝜎2

2 − 𝜎1𝜎2 = 𝜎1 l2 − l + 1 

 

𝜀1 =
𝜀11 + 𝜀22

2
+

𝜀11 − 𝜀22

2

2

− 𝜀12
2 =

𝜀11 + 𝜀22

2
+

𝜀11 − 𝜀22

2

2

−
𝛾12

2

2

 

𝜀2 =
𝜀11 + 𝜀22

2
−

𝜀11 − 𝜀22

2

2

− 𝜀12
2 =

𝜀11 + 𝜀22

2
−

𝜀11 − 𝜀22

2

2

−
𝛾12

2

2
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The Von Mises stress is 
considered as equivalent 
stress 



Salerno 2017 Multiaxial Fatigue 

• Dowling method 

– From the constitutive equations: 

  𝜀1 =
1

𝐸
𝜎1 − 𝜎2 =

1

𝐸
1 − l 𝜎1 =

𝜎1

𝐸∗               with         𝐸∗ =
𝐸

1−l
 

  𝜀2 = 𝜑𝜀1 =
1

𝐸
𝜎2 − 𝜎1 =

1

𝐸
l −  𝜎1 

          𝜑𝜀1 = 𝜑
1

𝐸
1 − l 𝜎1 =

1

𝐸
l −  𝜎1     →    l −  = 𝜑 1 − l  

 

– The maximum strain is rearranged as follows: 

𝜀1 = 𝜀1
𝑒 + 𝜀1

𝑝 =
1

𝐸
1 − l 𝜎1 +

1

𝐸𝑝
1 − 𝑝l 𝜎1 =

𝜎1

𝐸∗
+

𝜎1

𝐸𝑝
1 − 0.5l = 

=
𝜎1

𝐸∗
+

𝜎1

𝜎𝑒𝑞
𝜀𝑒𝑞

𝑝 1 − 0.5l  

                        (being in full plasticity 𝑝 = 0.5) 65 
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• Dowling method 

𝜀𝑒𝑞
𝑝 =

𝜎𝑒𝑞

𝐾′

1
𝑛′

  →     
𝜀𝑒𝑞

𝑝

𝜎𝑒𝑞
=

1

𝜎𝑒𝑞

𝜎𝑒𝑞

𝐾′

1
𝑛′

=
l2 − l + 1 −

1
2+

1
2𝑛′

𝜎1

𝜎1

𝐾′

1
𝑛′

 

 

𝜀1 =
𝜎1

𝐸∗
+ l2 − l + 1

𝑛′−1
2𝑛′ 1 − 0.5l

𝜎1

𝐾′

1
𝑛′

=
𝜎1

𝐸∗
+

𝜎1

𝐾′∗

1
𝑛′

 

 

𝐾′∗ =
𝐾′

1 − 0.5l 𝑛′
l2 − l + 1

𝑛′−1
2  

 

– Dowling method uses the same Strain based approach 
defined in previous chapter, but the cyclic Ramberg-Osgood 
equation coefficient E and K’ are replaced by E* and K’* 
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• Dowling method 

– The problem is solved as in the uniaxial approach, using the 
Ramberg-Osgood equation in conjunction with the Neuber 
(or Glinka E.S.E.D.) equation 

𝜀1 =
𝜎1

𝐸∗
+

𝜎1

𝐾′∗

1
𝑛′

 

𝜎𝑒𝑞
𝑒𝜀𝑒𝑞

𝑒 =
𝜎𝑒𝑞

𝑒 2

𝐸
=

𝜎1
2

𝐸∗
+ 𝛼 𝑈𝜎1

𝜎1

𝐾′∗

1
𝑛′

 

 

∆𝜀1 =
∆𝜎1

𝐸∗
+

∆𝜎1

2𝐾′∗

1
𝑛′

 

∆𝜎𝑒𝑞
𝑒 2

𝐸
=

∆𝜎1
2

𝐸∗
+ 2𝛼 𝑈∆𝜎1

∆𝜎1

2𝐾′∗

1
𝑛′
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Monotonic 

Cyclic 
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• Dowling method 

– Solving the two equations, numerically, 𝜎1 and 𝜀1  are 
calculated. The other stresses and strains are then derived: 

 

𝜎2 = l ∙ 𝜎1              𝜀2 = 𝜑 ∙ 𝜀1 =
l − 𝜈

1 − l𝜈
𝜀1 

𝜀3 = −
𝜈′

𝐸
𝜎1 + 𝜎2 = −

𝜈′

𝐸
1 + l 𝜎1 = −

𝜈′

𝐸
1 + l

𝜀1
1
𝐸

1 − 𝜈′l
= −𝜈′

1 + l

1 − 𝜈′l
𝜀1 

 

– being 𝜈′ the Poisson ratio in plastic region, calculated as 

𝜈′ = 𝑝 − 𝑝 − 𝜈
𝜎1

𝐸∗ ∙ 𝜀1
= 0.5 − 0.5 − 𝜈

𝜎1

𝐸∗ ∙ 𝜀1
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• Dowling method 

– Depending on the bi-axiality ratio l the calculation of the 
shear strain changes. 

– In case of l ≤ 0:  
𝛾𝑚𝑎𝑥

2
=

𝜀1−𝜀2

2
=

𝜀1

2
1 −

l−𝜈

1−l𝜈
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• Dowling method 

– In case of l > 0:  
𝛾𝑚𝑎𝑥

2
=

𝜀1−𝜀3

2
=

𝜀1

2
1 + 𝜈′

1+l
1−l𝜈′
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• Dowling method 

– With respect to a uniaxial fatigue analysis, the presence of a 
bi-axiality ratio leads to results that would be conservative 
or unconservative if the bi-axiality ratio would be ignored: 

• l < 0  UNCONSERVATIVE 

• l > 0  CONSERVATIVE 
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l = 0 

l > 0 

l < 0 

𝜀 

𝜎 
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• Hoffman-Seeger method 

– This method assumes that only the strain ratio 𝜑 is constant 
(not also the stress ratio l), which is an assumption more 
adherent to the experimental evidence 

– The approach considers same equations as for the uniaxial 
case, applied to an equivalent stress (signed Von Mises) 

 

𝜎𝑒𝑞 =
𝜎1

𝜎1
𝜎1

2 + 𝜎2
2 − 𝜎1 ∙ 𝜎2 

 

– The Ramberg-Osgood equation gets the form 

𝜀𝑒𝑞 =
𝜎𝑒𝑞

𝐸
+

𝜎𝑒𝑞

𝐾′

1
𝑛′
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• Hoffman-Seeger method 

 

𝜎𝑒𝑞
𝑒𝜀𝑒𝑞

𝑒 =
𝜎𝑒𝑞

𝑒 2

𝐸
=

𝜎𝑒𝑞
2

𝐸
+ 𝛼 𝑈𝜎𝑒𝑞

𝜎𝑒𝑞

𝐾′

1
𝑛′

 

 

∆𝜎𝑒𝑞
𝑒 2

𝐸
=

∆𝜎𝑒𝑞
2

𝐸
+ 2𝛼 𝑈∆𝜎𝑒𝑞

∆𝜎𝑒𝑞

2𝐾′

1
𝑛′

 

 

 By solving the Ramberg-Osgood and one of the two above, 
the equivalent stress and strains are obtained, 𝜎𝑒𝑞 and 𝜀𝑒𝑞 
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Monotonic 

Cyclic 
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• Hoffman-Seeger method 

– The Poisson ratio in plastic region is 

 

𝜈′ = 𝑝 − 𝑝 − 𝜈
𝜎𝑒𝑞

𝐸 ∙ 𝜀𝑒𝑞
= 0.5 − 0.5 − 𝜈

𝜎𝑒𝑞

𝐸 ∙ 𝜀𝑒𝑞
 

 

– And the bi-axiality ratio in plastic domain is calculated (from 
the constitutive equations) 

 

l =
𝜎2

𝜎1
=

𝜑 + 𝜈′

1 + 𝜈′𝜑
 

– With Dowling approach this was assumed constant; with 
Hoffmann-Seeger it is not constant. 
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• Hoffman-Seeger method 

– The max principal stresses are 

𝜎1 = 𝜎𝑒𝑞

1

1 − l + l
2
             𝜎2 = l ∙ 𝜎1 = 𝜎𝑒𝑞

l

1 − l + l
2
 

 

– The strain components, from the constitutive equations, are 

𝜀1 =
𝜀𝑒𝑞

𝜎𝑒𝑞
𝜎1 − 𝜈′𝜎2 = 𝜀𝑒𝑞

1 − 𝜈′l

1 − l + l
2
 

𝜀2 =
𝜀𝑒𝑞

𝜎𝑒𝑞
𝜎2 − 𝜈′𝜎1 = 𝜀𝑒𝑞

l − 𝜈′

1 − l + l
2
 

𝜀3 =
𝜀𝑒𝑞
𝜎𝑒𝑞

−𝜈′ 𝜎1 + 𝜎2 = −𝜈′ ∙ 𝜀𝑒𝑞
1 + l

1 − l + l
2
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• Hoffman-Seeger method 

– Depending on the bi-axiality ratio l the calculation of the 
shear strain changes. 

 

– In case of l ≤ 0:  
𝛾𝑚𝑎𝑥

2
=

𝜀1 − 𝜀2
2

=
𝜀𝑒𝑞

2

1 − 𝜈′l − l + 𝜈′

1 − l + l2
 

 

– In case of l > 0: 
𝛾𝑚𝑎𝑥

2
=

𝜀1 − 𝜀3
2

=
𝜀𝑒𝑞

2

1 − 𝜈′ − 2𝜈′l

1 − l + l2
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• Many solution schemes for generic Non-Proportional Loading 
problem have been developed. Some, like the one from Glinka-
Buczynsky, are computationally demanding as they involve the 
incremental solution of a large set of non-linear equations 
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In the deviatoric space: 
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• Blue terms: Elastic input (from FEM linear elastic analysis) 

• Red terms: Elastic-plastic output 

• 7 equations in 8 unknowns (Dea
11, Dea

22, Dea
33, Dea

23, DSa
22, 

DSa
33, DSa

23, Dea
eq) where the term 

 

∆𝜀𝑒𝑞
𝑎 =

𝑑𝑓 𝜎𝑒𝑞
𝑎

𝑑𝜎𝑒𝑞
𝑎

∆𝜀𝑒𝑞
𝑎      →       

3

2

∆𝜀𝑒𝑞
𝑎

𝜎𝑒𝑞
𝑎

=
3

2

∆𝜎𝑒𝑞
𝑎

𝐶 𝜎𝑒𝑞
𝑎 

 

• is calculated with the Mróz-Garud  Multi-Surface Model (later 
described), representing the 8th condition for the solution 

• At each increment the terms ea
11, e

a
22, e

a
33, e

a
23, S

a
22, S

a
33, S

a
23 

are derived from the calculated increments and previous 
iteration condition 
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C = Plastic modulus 
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• From deviatoric quantities, the stresses and strains are derived 

 

 

 

 

 

80 

GLINKA-BUCZYNSKY METHOD FOR MULTIAXIAL NON-
PROPORTIONAL LOADING ELASTIC-PLASTIC STRESS DERIVATION 

 

 

22 22 22 33

33 33 22 33

23 23

1

3

1

3

a a a a

a a a a

a a

S

S

S

s s s

s s s

s


= 




= 

=









22 33 23, ,a a as s s

 
 

 

 
 

 
 

   

11 22 33 22 33

22 22 33 22 33

33 33 22 33 22

23 23 23

1

2

1 1

2

1 1

2

1 3

2

a

eqa a a a a

a

eq

a

eqa a a a a

a

eq

a

eqa a a a a

a

eq

a

eqa a a

a

eq

f

E

f

E

f

E

f

E

s
e s s s s

s

s
e s s s s

s

s
e s s s s

s

s
e s







s


s


 =    


  

=    
 


  

=    
 


 = 






Salerno 2017 Multiaxial Fatigue 

 

• An efficient approach was proposed by Köttgen-Barkey-Socie, 
called ‘Pseudo-Material’, or ‘Structural Yield Surface Approach’  
approach. 

 

• It assumes that the linear elastic ‘pseudo-stress’ (or ‘pseudo-
strain’) and the Elastic-Plastic notch tip strains (or stresses) can 
be related in all directions by a single scalar constitutive model 
𝜎 × 𝜀  or 𝜎 × 𝜀 , where the symbol ~ denotes the pseudo-
material characteristic. 

81 

PSEUDO-MATERIAL METHOD FOR MULTIAXIAL NON-
PROPORTIONAL LOADING ELASTIC-PLASTIC STRESS DERIVATION 
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• The pseudo-material curve is used to simulate the Elastic-Plastic 
notch tip 𝜎 × 𝜀  behavior under multiaxial non-proportional 
conditions, using a two steps calculation procedure: 

 

– First step: the linear elastic pseudo-stress (or strain) 
loading history, obtained from FEM linear elastic analysis, is 
used to calculate the actual Elastic-Plastic notch tip strain 
(or stress) history. 

 

– Second step: Elastic-Plastic notch tip stress (or strain) is 
calculated from the Elastic-Plastic notch tip strain (or stress) 
history calculated at the first step. 
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PSEUDO-MATERIAL METHOD FOR MULTIAXIAL NON-
PROPORTIONAL LOADING ELASTIC-PLASTIC STRESS DERIVATION 
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PSEUDO-MATERIAL METHOD FOR MULTIAXIAL NON-
PROPORTIONAL LOADING ELASTIC-PLASTIC STRESS DERIVATION 

The path (1) 
represents the Pseudo-
Stress approach, 
whereas the path (2) 
represents the Pseudo-
Strain approach.  

 

Both deliver the same 
final Elastic-Plastic 
stress-strain condition. 

𝜀 =
𝜎

𝐸
+

𝜎

𝐾′

1
𝑛′

         𝜎 = 𝜎2 + 𝐸 ∙ 𝛼 𝑈∙ 𝜎 ∙
𝜎

𝐾′

1
𝑛′

         𝜀 =
𝜎

𝐸

2

+ 𝛼 𝑈 ∙
𝜎

𝐸
∙

𝜎

𝐾′

1
𝑛′
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• Step 1.a: discretization of the material stress-strain curve. 

• Step 1.b: definition of the pseudo-stress curve discrete points: 

 

𝜎 𝑖 = 𝜎𝑖
2 + 𝐸 ∙ 𝛼 𝑈∙ 𝜎𝑖 ∙

𝜎𝑖

𝐾′

1
𝑛′

       𝜀𝑖 =
𝜎𝑖

𝐸
+

𝜎𝑖

𝐾′

1
𝑛′

       𝛼 𝑈 =
𝛼𝑈 + 𝑛′ ∙ (2 − 𝛼𝑈)

1 + 𝑛′
 

  

 The parameter 𝛼𝑈 spans between 1 and 2: 

   𝛼𝑈 = 1   →    𝛼 𝑈 = 1  →  Neuber rule  

   𝛼𝑈 = 2   →    𝛼 𝑈 =
2

1+𝑛′
  →  E.S.E.D. Glinka rule  

 

Note: the pseudo-material curve 𝜎 𝑖 , 𝜀𝑖 cannot be fitted by a Ramberg-Osgood 

equation, therefore the curve is numerically given by points 
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PSEUDO-MATERIAL METHOD FOR MULTIAXIAL NON-
PROPORTIONAL LOADING ELASTIC-PLASTIC STRESS DERIVATION 
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• Step 1.c: derivation 
of Elastic-Plastic 
strains history from 
the Pseudo-Stress 
curve with a Cyclic 
Plasticity model. 

 

• Step 2: calculation of 
Elastic-Plastic 
stresses history from 
the Elastic-Plastic 
strains calculated in 
the previous step, 
again with a Cyclic 
Plasticity model. 
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PSEUDO-MATERIAL METHOD FOR MULTIAXIAL NON-
PROPORTIONAL LOADING ELASTIC-PLASTIC STRESS DERIVATION 
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• Cyclic Plasticity Models involve three ‘actors’: 

– Yield function 

 
𝑓 = 𝜎1

2 + 𝜎2
2 − 𝜎1 ∙ 𝜎2 − 𝑆𝑦2 = 0 

 

 

– Plastic Flow (“normality”) Rule  

 

𝑑𝜀 𝑝𝑙 =
1

𝐶
𝑑𝜎 𝑇 ∙ 𝑛 ∙ 𝑛 

– Hardening Rule 

• Many models have been developed, for example the 
Mróz-Garud Multi-Surface (hardening) Model 
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CYCLIC PLASTICITY 

C = Plastic modulus 

𝜎𝑒𝑞 
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• Instant 0  (𝜎 = 0) 
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CYCLIC PLASTICITY 

𝜎1 

𝜎2 

Stress Status 

𝜎 

𝜀 

C0 =s1/e1 =E 

C1=(s2-s1)/(e2-e1) 

C2=(s3-s2)/(e3-e2) 

C3=(s4-s3)/(e4-e3) 

1 

2 

3 

4 
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• Instant 0 

• Instant 1 
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CYCLIC PLASTICITY 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2  (yielding)  
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CYCLIC PLASTICITY 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 (yielding surf. translation) 

The plastic modulus C is the one related 

to the first surface, C1 
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CYCLIC PLASTICITY 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 

• Instant 4 (hardening surf. translation) 

The plastic modulus C is the one related 

to the second surface, C2 
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CYCLIC PLASTICITY 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 

• Instant 4 

• Instant 5 

This is a ‘reversal’ in the elastic 

region, i.e. C=E 
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CYCLIC PLASTICITY 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 

• Instant 4 

• Instant 5 

• Instant 6 (yielding surf. translation) 

Here again the first surface is 

touched, i.e. the plastic modulus  

C is the one related to the first  

surface, C1 
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CYCLIC PLASTICITY 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 

• Instant 4 

• Instant 5 

• Instant 6 

• Instant 7 

• … 

 

COMPUTATIONALLY DEMANDING 

(INCREMENTAL APPROACH) 

 

 

94 

CYCLIC PLASTICITY 

𝜎1 

𝜎2 
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• It is clear from this example 
that the stress condition at a 
certain instant t depends on 
the time history of the previous 
events (which determine the 
disposition of the hardening 
surfaces)… 

• …in other words the 
instantaneous stress condition 
due to a given Load depends 
on the previous loads time 
history 

• This is the Memory Effect 
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CYCLIC PLASTICITY 

𝜎1 

𝜎2 
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• Mróz hardening rule 

 

 

 

96 

CYCLIC PLASTICITY 

𝑓𝑖  

𝑓𝑖+1 

  

𝑛 

𝑛 

P 

P‘ 

𝑣  

𝑂𝑖 

  

𝑂𝑖+1 

  

𝑂 

  

𝛼𝑖 𝛼𝑖+1 

𝑑𝛼𝑖 

S11 

S22 S33 

𝑆  

  

𝑑𝛼𝑖 =
𝑑𝑆 ∙ 𝑛

𝑣 ∙ 𝑛
𝑣  

𝑣 =
2

3
𝑅𝑖+1 − 𝑅𝑖 𝑛 + 𝛼 𝑖+1 − 𝛼 𝑖 

Where 𝛼 𝑖 and 𝑅𝑖 represent the center and the 
radius of the i-th surface respectively. The term 
𝛼 𝑖 is the ‘backstress’ (center) of the i-th 
surface at the current stress state. 

An important rule of the multi-surface 
kinematic hardening model is that, while 
translating, the surfaces cannot cross each 
other.  

Voigt-Mandel deviatoric space 
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• Mróz-Garud hardening rule 
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CYCLIC PLASTICITY 

𝑑𝛼𝑖 =
𝑑𝑆 ∙ 𝑛

𝑣 ′ ∙ 𝑛
𝑣′ 

𝑣′ =
2

3
𝑅𝑖+1 − 𝑅𝑖 𝑛′ + 𝛼 𝑖+1 − 𝛼 𝑖 

P 

𝑛 

𝑛′ 

P‘ 

𝑣′ 

𝑂𝑖 

  

𝑂𝑖+1 

  

𝑂 

  

𝛼𝑖 𝛼𝑖+1 

𝑑𝛼𝑖 

S11 

S22 S33 

P‘‘ 

𝑆  

  

𝑂𝑖′ 

  

𝑑𝑆 

  

𝑓𝑖  

𝑓𝑖+1 

  

Garud, in examining hardening rules, found 
that when the stress increments are discretized 
(finite, not infinitesimal), the translation of the 
yield surface creates an inconsistency as the 
hardening surfaces may intersect each other 
while translating.  

In order to avoid this inconsistency, Garud 
modified the model, where the translation is 

based on another vector, 𝑣′, calculated such to 

have tangency of the surfaces at the contact 
point.  

Voigt-Mandel deviatoric space 
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• Mróz-Garud Model Calculation Example 

– Assume two different Load paths: 

 

 

 

 

 

 

 

 

 

– Different paths, same final elastic condition  
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CYCLIC PLASTICITY 

𝜎11 

𝜎12 

𝜎11 

𝜎12 

Path A Path B 

1 

2 

3 

1 

2 

3 

Final 
condition 

Final 
condition 4 

4 
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• Mróz-Garud Model Calculation Example 

– Assume the following material curve (discretized in 5 surfaces only 
for simplicity, however commercial codes use 20-40 surfaces) 
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CYCLIC PLASTICITY 

0 

400 

500 

550 

600 

650 

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1 1.2

s
ig

m
a
 

epsilon 

𝑆11 = 𝜎11 

𝑆12 = 3𝜎12 



Salerno 2017 Multiaxial Fatigue 

• Mróz-Garud Model Calculation Example – Path A 
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CYCLIC PLASTICITY 

𝑆11 = −400 𝑀𝑃𝑎 
𝑆12 = 346.4 𝑀𝑃𝑎 

𝑆11 = −65.6 𝑀𝑃𝑎 
𝑆12 = 127 𝑀𝑃𝑎 

Eff. stress 𝑆 − 𝑂 
𝑆11 = −334.4 𝑀𝑃𝑎 
𝑆12 = 219.4 𝑀𝑃𝑎 
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• Mróz-Garud Model Calculation Example – Path B 
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CYCLIC PLASTICITY 

𝑆11 = −400 𝑀𝑃𝑎 
𝑆12 = 346.4 𝑀𝑃𝑎 

𝑆11 = −94.9 𝑀𝑃𝑎 
𝑆12 = 87.7 𝑀𝑃𝑎 

Eff. stress 𝑆 − 𝑂 
𝑆11 = −305.1 𝑀𝑃𝑎 
𝑆12 = 258.7 𝑀𝑃𝑎 
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• Mróz-Garud Model Calculation Example – Path A vs Path B 
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CYCLIC PLASTICITY 

Path A Path B • Notice that, though the 
final condition is the 
same,  the hardening 
surfaces have a 
different layout at the 
end 

• When calculating the 
Elastic-Plastic 
stress/strain condition 
the solution will be 
different between Path 
A and Path B 

• This is the Memory 
Effect 

 

 

 

 

Eff. stress 𝑆 − 𝑂 
𝑆11 = −305.1 𝑀𝑃𝑎 
𝑆12 = 258.7 𝑀𝑃𝑎 

Eff. stress 𝑆 − 𝑂 
𝑆11 = −334.4 𝑀𝑃𝑎 
𝑆12 = 219.4 𝑀𝑃𝑎 
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• Mróz-Garud Model Calculation Example 

– At each increment, solving the Mróz-Garud Model implies 
determining: 

• Which hardening surface is ‘involved’, i.e. what is the Plastic 
Modulus C 

• Where is the Stress Status Point 

• Where is the Backstress 

– All the above make the Plastic Flow be calculated and the 
Elastic-Plastic stress tensor be derived 

– In case of the Pseudo-Material approach, the model is 
solved twice (at step 1 and step 2) 
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CYCLIC PLASTICITY 
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• If a multiaxial assessment is done at a real structure notch for 
real load time histories, we find the following 
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‘PROPORTIONAL REDUCTION’ SIMPLIFIED METHOD 

Scatter at negligible 
stress levels 

At relevant (damaging) 
stresses, defined 
biaxiality ratio and 
principal direction 
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• While building the elemental stress time history the weight 
average biaxiality ratio and principal direction are calculated 
(weight based in a power of stress or strain) 

 

• If the variance is close to 1 the we can reduce the problem by 
extracting the stress at the average max principal direction and 
assigning the average biaxiality ratio 

 

• Then the problem can be solved with Dowling or Hoffman-
Seeger (way faster) with negligible loss of precision (engineering 
approach) 
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‘PROPORTIONAL REDUCTION’ SIMPLIFIED METHOD 
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• Critical plane methods are very popular. They are based on 
analysis performed at many ‘candidate’ critical planes. 

 

• Amongst all ‘candidate’ planes, the critical one is the plane which 
maximizes the defined fatigue parameter, e.g., in LCF: 

– Smith-Watson-Topper: 𝜎𝑁,𝑚𝑎𝑥 ∙
∆𝜀𝑁

2
 

 

– Brown-Miller: 
∆𝛾𝑚𝑎𝑥

2
+ 𝑆∆𝜀𝑁 

 

– Fatemi-Socie: 
∆𝛾𝑚𝑎𝑥

2
1 + 𝑆

𝜎𝑁,𝑚𝑎𝑥

𝑆𝑦
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CRITICAL PLANE APPROACH 
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CRITICAL PLANE APPROACH 

X’ 

Y’ 

Z’ 

• Working on the surface of a mechanical component, two 
rotations define the critical plane. 
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CRITICAL PLANE APPROACH 

• Working on the surface of a mechanical component, two 
rotations define the critical plane. 

 

 

 

 

 

X’ 

Y’ 

Z’ 

X 

f 

sN, De/2 

  

sN, De/2 

  

De N 

  

De N 

  

Dgxy/2 

  

SWT – Plane T0 

BM/FS – Plane A0 
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CRITICAL PLANE APPROACH 

• Working on the surface of a mechanical component, two 
rotations define the critical plane. 

 

 

 

 

 

 

 

 

 

• The second rotation is usually done at 45° only 

 

 

 

 

 

X’ 

Y’ 

Z’ 

X 

f 

45° 

De N 

  

DeN 

  

Dgxy/2 

  

Dgzy/2 

  

BM/FS– Plane A45 

BM/FS– Plane B45 
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EXAMPLE WITH THE SOFTWARE LIFING 

Instant ti 

328.8 MPa 
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EXAMPLE WITH THE SOFTWARE LIFING 

Instant tk 

313.4 MPa 
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EXAMPLE WITH THE SOFTWARE LIFING 

Fatigue Critical Location 

Life = 10
3.023

 cycles 
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EXAMPLE WITH THE SOFTWARE LIFING 
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• The Dang Van approach is a multiscale fatigue crack initiation 
approach for HCF based on the use of mesoscopic stresses, i.e. 
stresses at the grain scale, where slip bands are identified(*). 

 

• (*) This grain scale is intermediate, between the engineering 
macroscopic scale (i.e. crack propagation scale or, in FEM, the 
elements scale) and the microscopic scale (i.e. where 
dislocations occur).  
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DANG VAN HCF METHOD 
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• Dang Van postulated the following: 

– For an infinite lifetime, near the fatigue limit, crack 
nucleation in slip bands may occur in the most unfavourably 
oriented grains, which are subjected to plastic deformation 
even if the macroscopic stress is elastic. Residual stresses in 
these plastically deformed grains will be induced due to the 
restraining effect of the adjacent grains.  

 

– An elastic shakedown (i.e. stabilization of elastic response) 
in a macroscopic state occurs before the fatigue limit and 
both the mesoscopic and macroscopic plastic strains and 
residual stresses are stabilized. 
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DANG VAN HCF METHOD 



Salerno 2017 Multiaxial Fatigue 

116 

DANG VAN HCF METHOD 

• The initial elastic domain of the 
critical volume of material is 
illustrated by the circle Co, with 
center at Oo and radius Ro (at 
beginning equal to 0)  

• As loading progresses the material 
undergoes combined kinematic 
and isotropic hardening, as the 
center of the yield surface 
translates and the radius of the 
surface increases.  

• After several repetitions of the 
load path, a stable domain CL with 
center OL and radius RL will 
evolve.  

• The stable path is characterized 
by the smallest circle, CL that 
completely encloses the load path. 



Salerno 2017 Multiaxial Fatigue 

117 

DANG VAN HCF METHOD 

• Dang Van postulates that the 
stabilized residual stress tensor 
corresponds to the center of such 
a circle, representing the smallest 
Von Mises yield surface, that 
completely encloses the path 
described by the deviatoric stress 
tensor 

• It is given by the min-max 
function 

 
𝜌 ∗ = 𝑀𝑖𝑛𝛼 𝑀𝑎𝑥𝑡 𝜎𝑉𝑀(𝑡)  

 

• Which is calculated iteratively 
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DANG VAN HCF METHOD 

• According to the Dang Van criterion, 
fatigue damage does not occur if 

 
𝑀𝑎𝑥𝑡[ 𝜏𝑚𝑒𝑠𝑜 𝑡 + 𝑎 ∙ 𝜎𝑚𝑒𝑠𝑜−ℎ 𝑡 ] ≤ 𝑏 

 

• where a is the hydrostatic stress 
sensitivity and b is the shear fatigue 
limit.  

• At each instant t, the following 
reserve factor is calculated 

 

𝑅𝐹 =
𝑏

𝜏𝑚𝑒𝑠𝑜 𝑡 + 𝑎 ∙ 𝜎𝑚𝑒𝑠𝑜−ℎ 𝑡
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• Why the need of removing conservativism? ‘Fatigue analyses have 
always been done with conventional conservative approaches’... 

 

 

 

 

 

 

 

 

• ...true, but the industry is going in the direction of ‘super-optimized’ 
structures. Converntional techniques are INSUFFICIENT! State-of-the-
art analysis methods and tools are required 
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THE NEW CHALLENGES 
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