

METODOLOGIE E TECNOLOGIE PER LO SVILUPPO DI UN NUOVO VELIVOLO

Computational Fluid Dynamics and Wind Tunnel Testing

F. Nicolosi, A. De Marco, P. Della Vecchia, S. Corcione, D. Ciliberti, V. Cusati

2° Incontro - Napoli, 14 Giugno 2014 Scuola Politecnica e delle Scienze di Base Piazzale V. Tecchio 80, 80125 Napoli

CFD – Historical notes

- → Lewis Fry Richardson ("Weather prediction by numerical process", 1922)
- → Early CFD calculations during the 1940s using <u>ENIAC</u> (first electronic generalpurpose <u>computer</u>)
- → Francis H. Harlow, Los Alamos National Lab
- → A.M.O. Smith of Douglas Aircraft in 1967 (Panel Methods)
- PanelCodesBoeing(PANAIR),Lockheed(Quadpan),Douglas(HESS),McDonnellAircr aft(MACAERO),NASA(PMARC) and AnalyticalMethods(VSAERO)
- → Profile (Eppler) , XFOIL(Drela), (1980)
- → Transonic modeling (Jameson) 1975
- → MGAERO <u>cartesian</u> mesh code. NASA CART3D code, Lockheed's SPLITFLOW code and <u>Georgia Tech</u>'s NASCART-GT. 3-D AIRPLANE code (Jameson) whith unstructured tetrahedral grids.

CFD – Some Notes

→ The Reynolds-averaged Navier-Stokes equations (or RANS equations) are time-averaged equations of motion for <u>fluid flow</u>. The RANS equations are primarily used to describe <u>turbulent flows</u>.

- → Each model, each approach (potential, panel method, full potential, inviscid + b.l., viscous, 2-D or 3-D) can be extremely useful to perform the design and the analysis of an aircraft.
- 1) 2-D (inviscid+b.l.) airfoil analysis and design (XFOIL, MSES, JAVAFOIL, in house)

1.2

2) 2-D multi-component airfoil analysis and design

Drela M. Newton solution of coupled viscous/inviscid multielement airfoil flows. AIAA Paper 90-1470, June 1990.

Figure 5.- Comparison of theoretical and experimental lift distribution on a swept wing with and without fuselage. A = 8; λ = 0.45; Λ = 45°; a* = 0.1; α = 4.7°.

4) 3-D Panel Method + b.l. (ex. VSAERO)

- (Attached incompressible flow, complex geometry)
- Steady /Unsteady
- Skill required for meshing
- Large PC workstations
- Accuracy in prediction of longitudinal and lateraldirectional derivatives (linear range), downwash, skin friction drag, vortex drag(winglet), propulsive effects
- Computing time (1 aoa, complex geometry) on workstation => about 1 hr.

7

Experiment within wind tunnel

5) 3-D Euler

-

- (Attached compressible flow, complex geometry)
- Steady / Unsteady
- Skill required for meshing
- Large PC workstations or Parallel Computing
- Accuracy in prediction of longitudinal and lateraldirectional derivatives (linear range), downwash, skin friction drag, vortex drag(winglet), propulsive effects and shock waves.
- Computing time (1 aoa, complex geometry) workstation => about 3 hr.

6) 3-D Navier-Stokes (RANS)

- (Turbulent and separated flow, compressible flow, complex geometry)
- Steady / Unsteady
- Very High Skill required for meshing
- Workstations or Parallel Computing
- Interaction between components, separated flow, stall, wake indirect effects.
- From CAD to results => about 10 days
- Computing time (1 aoa, normal case geometry) on workstation => about 3 hr.
- 128 CPU => about 1 hr

CFD – The complete process

- It is very important to work on tools to allow automatic interface between different software and format.
- Possible integration of CFD in a Multi-Disciplinary Optimization Framework

CFD – The complete process

- Communication in Aircraft Design
- > Development of a Design Framework coupling different tools and disciplinary analysis
- Concept-design and high-fidelity analysis

COMMUNICATION IN AIRCRAFT DESIGN: CAN WE ESTABLISH A COMMON LANGUAGE? B. Nagel, D. Böhnke, V. Gollnick, P. Schmollgruber, A. Rizzi, G. La Rocca, J. J. Alonso

CFD – Computational Load

How the CFD mesh has to be detailed ? How many Volume Cells ?

- For Longitudinal analysis in symmetrical condition half number of cells required
- For flapped configuration and analysis with propeller the number of cells should be increased
- Boundary layer modeling (Higher Re, thinner the b.l.)

CFD – Computational Load

Super Computing

- Parallel Computing (i.e. 164 CPU)
- Fast upload and download
- RAM and Storage Capabilities (GB)
- VERY COMPLEX problem (steady condition) (i.e. Complete Aircraft with flap and propulsive effects) => about 17-20 mill. Cells., 1 angle of attack
- Comp. Time (8 CPU) => 2 days 10 days (?)

(128 CPU) => 8 hr. - 34 hr.

Figure 77: CPUs scalability for a body-vertical configuration with 1 $800\,000$ polyhedral cells.

WIND-TUNNEL TESTS ARE CRUCIAL FOR AIRCRAFT DEVELOPMENT

Wind tunnel test: 5500 hrs for A380

15000 hrs Boeing 787

Aerodynamics in the Design Process

WIND-TUNNEL TESTS ARE CRUCIAL FOR NEW AIRCRAFT DEVELOPMENT

Through CFD complementary activity the goal is to reduce wind-tunnel test days => 1500 for A350

A380-800 Testing Days

→ WIND-TUNNEL TESTS ARE CRUCIAL FOR NEW AIRCRAFT DEVELOPMENT

Low-Speed Tests

ONERA F1

DNW

High-Speed Tests (Pressurized & Cryogenic)

ARA

Dynamic Tests

ETW

W

ONERA S1

Critical Aerodynamic Items

Aerodynamic Design of a Regional Turboprop - Critical Items

→ WING

- Airfoils
- AR, taper ratio, twist
- Winglet, Dihedral

→ HIGH-LIFT SYSTEM

- Flap (2-D and 3-D)

→ FUSELAGE

- Section and Fineness ratio
- Nose and Tail

→ KARMAN/FAIRING

- Karman shape
- Fairing shape and wheel bay
- → NACELLE (and Prop. effects)
 - Nacelle shape
 - Prop. Effects on wing and tail

→ TAIL

- Vertical tail, dorsal fin
- Horizontal tail

WING – Airfoil

→ Thickness ratio

- Cruise drag
- Stall behavior
- Wing weight
- Fuel tank Volume

→ Airfoil shape

- Laminar flow ?
- Cruise drag, climb drag, max lift

→ L.e. radius

- Clmax and stall behavior

→ Airfoil camber

- Clmax and stall behavior
- wing moment coefficient (tail eq. loads)

CFD Application for Regional Tprop

Airfoil aerodynamic analysis in ICE condition

WING Aerodynamics

Wing spanwise aerodynamic load
(Correct estimation of structural loads)

Nicolosi F., Pascale L. "*Design and Aerodyanmic analysis of a light twin-engine propeller aircraft*" 26th ICAS Congress, 2008

WINGLET Design

- → Induced drag reduction
- Improved Climb capabilities (OEI)
- For high wing-loading aircraft (like ATR) gain also in cruise condition
- Increased wing structural bending

"Aerodynamic guidelines in the design and optimization of new regional turboprop aircraft» F. Nicolosi, P. Della Vecchia, CEAS 2011 Conference

"Aerodynamic guidelines in the design and optimization of new regional turboprop aircraft» F. Nicolosi, P. Della Vecchia, CEAS 2011 Conference

High Lift System

For a Regional Turboprop with 90 pax ground performances are particularly critical

- → Max lift coefficient in landing conditions (>2.6)
- → Good aerodynamic efficiency in take-off setting (first seg. Climb)
- Single slotted flap vs Fowler flap (higher lift vs higher pitching moment ?)
- System and actuation (weight and costs) => Simple high lift system

High Lift System Aerodynamic calculations ... some example

→ Gap and Overlap Optimization

High Lift System Aerodynamic calculations ... some example 3-D CFD RANS Calculations – AIAA Workshop on high-lift devices \rightarrow **DLR F11- Model** (Eurolift project) 3.5 Mach=0.17 Re=15 mill. 3.5 2.5 2.5 Ч 1.5 Ч 1.5 Experimental Numerical - Inviscid Numerical - Viscous Incompressible Experimental Numerical - Viscous Compressible Numerical - Inviscid 0.5 Numerical - Viscous Incompressible Numerical - Viscous Compressible 05 -5 10 15 20 25 -10 0 5 30 alpha 0.2 0.3 CD 0.5 0.1 0.4 0.6

Numerical Aerodynamic Analysis on a Trapezoidal Wing with High-Lift Devices : A Comparison with Experimental Data. P. Della Vecchia, D. Ciliberti, AIDAA Congress, Sept 2013

High Lift System Aerodynamic calculations ... some example

→ 3-D CFD RANS Calculations – AIAA Workshop on high-lift devices

Numerical Aerodynamic Analysis on a Trapezoidal Wing with High-Lift Devices : A Comparison with Experimental Data. P. Della Vecchia, D. Ciliberti, AIDAA Congress, Sept 2013

High Lift System Aerodynamic calculations ... some example

Cruise Drag gain : about 3-4 drag counts

Results obtained through panel code + b.l. calculations. Skin friction + pressure drag.

"Aerodynamic guidelines in the design and optimization of new regional turboprop aircraft» F. Nicolosi, P. Della Vecchia, CEAS 2011 Conference

Fuselage Nose – Investigation for New Design Procedure df Pressure Coefficient 0.040000 0.36000 Y X 0.68000 1.0000 Ln 1.1 - FR_n = 1.2 1.1 M = 0.52 \blacksquare FR_n= 1.4 1.08 $Re_{Lf} = 202 E6$ – FR_n= 1.6 1.05 1.06 $FR_{n} = 1.7$ 1.04 1 $\frac{C_{D}}{C_{D_{ref}}}$ $\frac{C_{M_{\alpha}}}{C_{M_{\alpha_{ref}}}}$ 0.95 1.02 1 0.9 0.98 0.85 0.96 0.8 L 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 0.94 36 38 40 42 44 46 50 52 54 48 FRn ψ (deg)

Fuselage Tail – Investigation for New Design Procedure

"Aerodynamic guidelines in the design and optimization of new regional turboprop aircraft» F. Nicolosi, P. Della Vecchia, CEAS 2011 Conference

"Aerodynamic guidelines in the design and optimization of new regional turboprop aircraft» F. Nicolosi, P. Della Vecchia, CEAS 2011 Conference

4 Abreast

Fuselage fineness ratio

Abreast vs 5 Abreast
Horizontal and Vertical tail area must be resized

 Preliminary Semi-Empirical Drag Calculation on assumed geometries

	4-Ab	5-Ab
CDo	0.0260	0.0277

Detailed CFD analysis: What is the price of higher comfort?

CFD Application – Effect of Aerodynamic Impr.

Δ V_{MAX} (kts)

Global Aerodynamic Improvements

- → Flight Max Cruise Speed
 - @ 20 kft altitude 10 drag count => 4 KTAS

Obtainable drag saving (cruise, 20 kft)

Fuselage Karman-3.5 drag countsFuselage nose-3.5Fuselage fairing-2.0Fuselage tail-2.0Winglet-8.0

TOTAL Drag saving about -20 drag counts

Possible Performance Improvements

Cruise Flight Speed Global Fuel Mission Saving (same flight speed) Improved OEI Climb and Ceiling (Winglet)

- 40 Kg (-6÷7 %)

Πkft

→ 5kft → 10kft → 15kft → 20kft

-▼- 25kft

10

CFD Application – Nacelle and Propeller Effects

Nacelle and propeller

→ CFD RANS Calculations

- Nacelle shape Optimization
- Effect of nacelle and propeller on wing aerod.
- Detailed study of propeller position
 - (streamwise, spanwise and vertical)
- Propeller indirect effects on tail

Wind-Tunnel Tests – Nacelle and Propeller Effects

1.0

1.0

Control Surfaces

Detailed RANS analysis of control surfaces

Control surfaces 2-D and 3-D efficiency

2.5

- High angles (non-linearity)
- Interference effects
- Hinge moment measurement

Nicolosi, F., Della Vecchia, P., Ciliberti, D. "Aerodynamic interference issues in aircraft directional control," ASCE's Journal of Aerospace Engineering, Ref.: Ms. No. ASENG-649R2

Horizontal tailplane

Design of P2012 Aircraft – Horizontal tail position

- Different position investigated
- Wing wake interaction for different flap setting
- CFD RANS and Wind-Tunnel Tests

Wind-Tunnel Tests – Tail Design

Critical Experimental Activities for Tprop

- → Airfoil tests (high speed) (M=0.50)
- Airfoil tests (low-speed) (flap optimization)
- Airfoil tests ICE condition
- → 3-D Model Tests (cruise)

Lift, Drag, Stability Derivatives, Control Derivatives

→ 3-D Model Tests (high-lift)

Max lift, stall path, wake effects, propeller effects. Aerodynamic effect of landing gear Tests in ground effect

→ 3-D HALF Model Tests (cruise)

Wing lift distribution, propeller effects, winglet effects

→ 3-D HALF Model Tests (high-lift)

Flap effects, lift distribution, propeller effects

Dynamic Model Tests

Aeroelastic effects, flutter

Airframe Noise Tests

Noise Measurement

Tests

Airfoil tests (high speed) (M=0.50) \rightarrow

Aerodynamic characteristics (lift, drag, cm) Pressure distribution Critical Mach number Transition (Low Turbulence Tunnel) Behavior with contaminated I.e.

Airfoil tests (low-speed) (flap optimization) \rightarrow

> Flap position optimization Tests of different flap system Pressure distribution Hinge moment measurement Behavior with contaminated I.e.

Airfoil tests in \rightarrow **ICE** conditions

(Ice accretion measurement)

Tests

Complete Aircraft Powered Wind-Tunnel Model

- > stability and control at different thrust conditions
- different engine nacelles
- take-off and approach conditions
- control surfaces, winglets, Landing gear
- Modular model (prop on/off, tail on/off, l.gear in/out)
- Engine Simulation

It is very important to measure the propeller effects Some aerodynamic derivative can be influenced by propeller effects

The A/C high-lift design performances (Low Noise while High Lift maintain)

Fokker F27 powered model (TU Delft)

3-D High-Lift (Low Speed Configuration), Re 3 and 6 mil., Mach=0.15-0.20 \rightarrow

3-D Tests and Half-Model Tests Tail off and Tail on measurements Measurement of max lift coeff., pitching moment Drag/Efficiency (take-off) Reynolds number effects

→ Wind-Tunnel Tests vs Flight Tests

DEVELOPMENT OF HIGH-LIFT SYSTEMS FOR THE BOMBARDIER CRJ-700 Fassi Kafyeke, François Pépin and Cedric Kho (Bombardier) ICAS 2002 Conference

Trimmed lift curves

→ Tests in ground effect

 A380 complex high-lift configuration incl. landing gear

1

H BAL

Wind Tunnel Experiment

Airbus A380: Solutions to the Aerodynamic Challenges of Designing the World's Largest Passenger Aircraft. A. Flaig, AIRBUS

→ 3-D Aeroacustic Tests

Recent AIRBUS Noise Tests

Measurement and control of aircraft landing gear broadband noise

Yong Li a,*,1, Malcolm Smithb, Xin Zhanga, Aerospace Science and Technology, 2012

(c) Slotted undertray

→ Advanced WT Tests: Gust Load Alleviation (GLA) CONTROL SYSTEM

- a) A/C with flexible wing WT model
- b) Model gust alleviation devices active
- c) Model system sensors models active in the loop with control laws
- d) Model control law engineering model in the loop with GLA devices
- e) Wind tunnel gust generator (wind tunnel air flow direction changes).

Conclusions

- All CFD Methods (from 2-D panel method to complex 3-D unsteady RANS) are extremely useful for the preliminary and detailed design of new aircraft
- → Computational tools allow the analysis of very complex phenomena
- → In the preliminary design phase it is very important to build a <u>Multi-Disciplinary Design Framework</u> linking CFD tools with CAD, Structure, Weight, Systems, Aeroelasticity, Flight Mechanics and Flight Dynamics
- → Possibility to reduce wind-tunnel tests work
- → Wind-tunnel tests to exploit several critical items (i.e. ICE, Propeller effects, etc.)
- → Wind-tunnel tests addressed to the assessment of an optimal configuration

CFD, WIND-TUNNEL and FLIGHT TESTS MUST BE CONSIDERED COMPLEMENTARY TOOLS

Industrial Remarks

- The matured experience and the data-base of an aircraft producer is really \rightarrow relevant to have good estimation of the aerodynamics and to get a successful design
- Many aerodynamic characteristics can not be calculated with CFD or measured \rightarrow in Wind-tunnels during the design phase.

Industrial Remarks

The BWB concept will be converted in a real commercial aircraft project ?

- New Technologies must be tested extensively, however usually it is not so easy to translate them in safe and certifiable concepts.
- → Aerodynamic is not the only relevant item for an aircraft !

A New Turboprop ?

Questions ?

"Nella società, sia gli ottimisti che i pessimisti hanno un ruolo. L'ottimista inventa l'aereo, il pessimista il paracadute." George Bernard Shaw

La tecnologia non tiene lontano l'uomo dai grandi problemi della natura, ma lo costringe a studiarli più approfonditamente. Antoine de Saint Exupéry

"Inventare un aereo è nulla. Costruirne uno è qualcosa. Farlo volare è tutto." Otto Lilienthal, pioniere dell'aviazione

THANK YOU

ANY QUESTIONS ?

fabrnico@unina.it