

I nuovi sistemi integrati di gestione e controllo dei motori alternativi

Aula "S. Bobbio", Scuola Politecnica e delle Scienze di Base – P.le Tecchio 22 Ottobre 2016

www.tecnam.com

www.tecnam.com 22 Ottobre 2016 2

2 A/F/UL ROTAX 912 S/ULS

ROTAX 915 IS ENGINE

3

MAIN DATA

135 HP

4-cylinder

4-stroke liquid/air-cooled engine with opposed cylinders Dry sump forced lubrication with separate oil tank, automatic adjustment by hydraulic, valve tappet Redundant electronic fuel injection, ignition, ECU

Engine management system

Electric starter

Propeller speed reduction gearbox

Air intake system

Turbocharger and intercooler

Target TBO (Time between overhauls) 2,000 hours

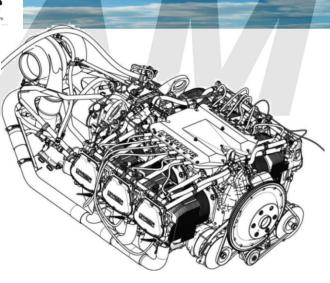
Efficiency: 280 - 310 g/kWh BFSC at 5,500 rpm

Service Ceiling of 23,000 feet

ROTAX 915 IS ENGINE

10-360-M1A

10-390-A1B6


TEO-540-C1A

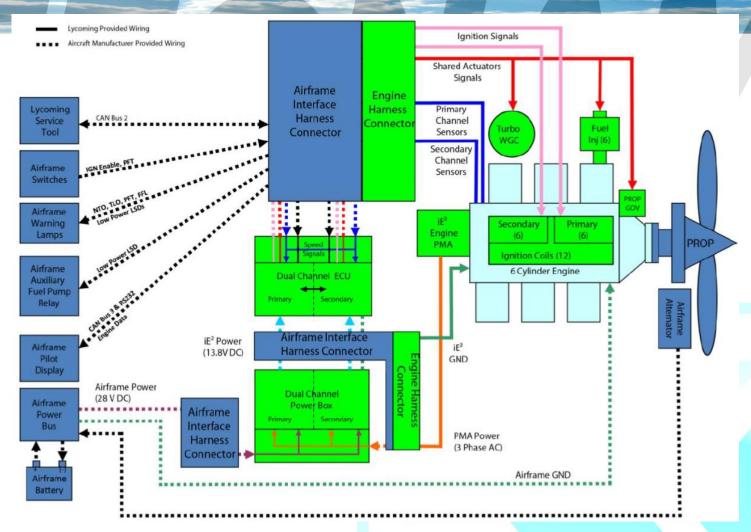
LYCOMING

MAIN DATA

Rated Max. Cont. HP/RPM	375/2575		
Performance Cruise (75% Rated)	281/2400		
Economy Cruise (65% rated)	244/2200		
Fuel Consumption, Cruise (lb/hr)	125 (75% Rated Power)		
	95 (65% Rated Power)		
Propeller Drive Ratio	1:1		
Propeller Shaft Rotation	Clockwise		
Bore (in)	5.125		
Stroke (in)	4375		
Displacement (in³)	541.5		
Compression Ratio	7.3:1		
Oil Sump Capacity (quarts)	12		
Fuel, Aviation Grade, Minimum Octane	100 or 100LL		
Fuel Injector, EEC	Electronic		
Ignition	Electronic - Variable		
Tachometer	Supplied in EEC Data Stream		
Starter, Ratio to C'Shaft at BEndix and	16.556:1 - C'Clockwise		
Rotation			
Starter, HET, Geared (24 Volts)	Standard		
Alternator Drives	Custom for P2012		
Alternator(s)	1x140 Amp each engine, 28 V		

TEO-540-C1A

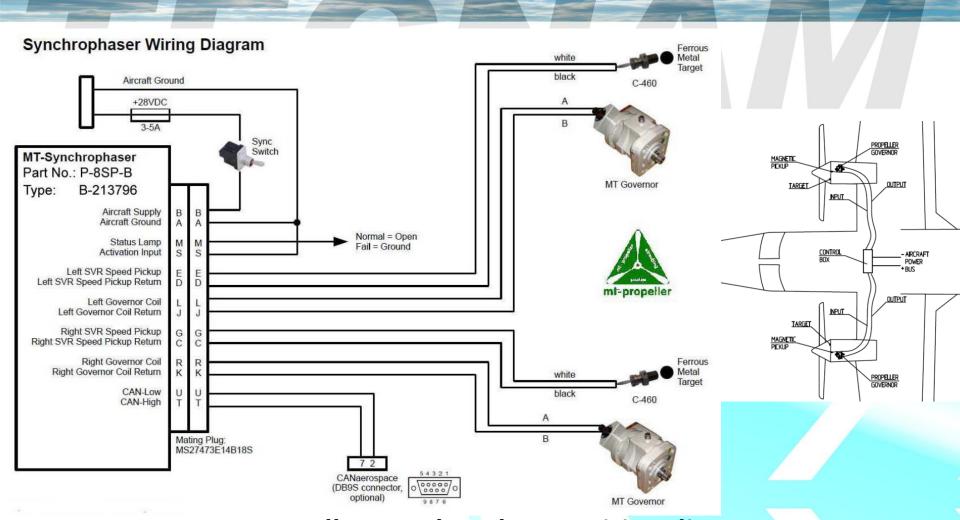
Power Box Unit (APU)



EECS Primary Components

TO STATE OF THE PARTY OF THE PA

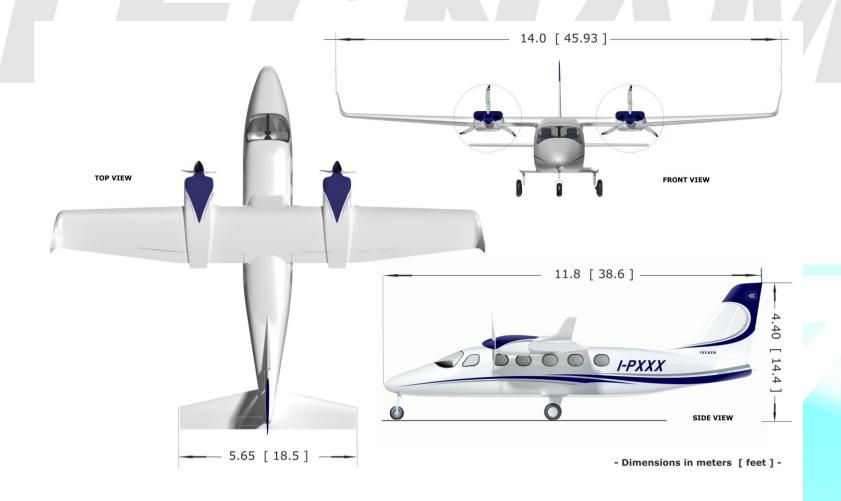
www.tecnam.com



EECS system Overview TEO-540-C1A

7 Francisco

MT-Propeller Synchrophaser wiring diagram


B CONTRACTOR OF THE PARTY OF TH

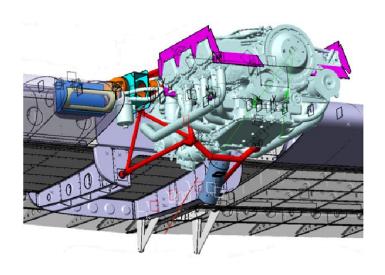
Installation of TEO-540-C1A on P2012 Traveller

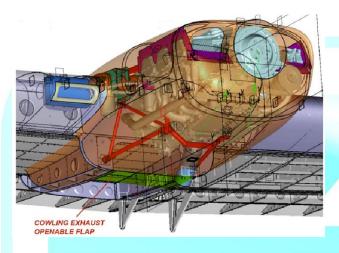
P2012 Traveller

Tecnam P2012 Traveller MAIN Data and Estimated Performances with TEO-540-M1A

Basic Empty Weight	2250kg	4960lbs	
Operational Empty Weight (single pilot and Pilots' Luggage)	2350kg	5181lbs	
Maximum Take- Off Weight	3452kg	7610lbs	
Maximum Landing Weight	3350kg	7385lbs	
Ramp Weight	3470kg	7650lbs	
Maximum Zero Fuel Weight (9 passengers + single pilot + luggage)	3363kg	7414lbs	
Wing Loading	136kg/m ²	27,8lbs/ft ²	
Power Loading	4,6kg/hp	10,1lbs/hp	
Payload (max fuel + single pilot)	656kg	1446lbs	
Fuel Capacity	446kg / 620lt	983lbs / 160USGal	

		172kts @ 6000ft		
	Cruise Speed (TAS 75%)	174kts @ 8000ft		
		177kts @ 1	L0000ft	
		162kts @ 6000ft		
	Cruise Speed (TAS 65%)	165kts @ 8000ft		
		167kts @ 10000ft		
	Stall Speed (Take-Off Configuration)	65kts		
	Stall Speed (Landing Configuration)	60kts		
	VMC	74kt	74kts 25000ft	
	Ceiling	25000		
	Rate of Climb	1600ft/min		
	Rate of Climb (Single Engine)	400ft/min		
	Take-Off Distance	561m	1841ft	
	Landing Distance (50ft obstacle)	506m	1660ft	
	Take-Off Run	430m	1411ft	
	Landing Run	267m	876ft	
	Accelerate-Stop Distance	570m	1870ft	
	Range (9 passengers, single pilot + luggage)	820km	445nm	


www.tecnam.com 22 Ottobre 2016



Engine typical installation

Interface with airframe typical problems:

- 1. Instrumentation;
- 2. Baffles and Seals Cooling test;
- 3. Oil Coolers, hoses and Lines;

22 Ottobre 2016 12

Instrumentation

nr DESCRIPTION

1 A/P mode controller Garmin GMC 710

2 Garmin GDU 1050 PFD1 (10")

3 Mid Continent MD 302 back up EFIS

4 Garmin GDU 1250 MFD (12")

5 Garmin GDU 1050 (10")

6 ELT remote switch

r DESCRIPTION

7 Anti-ice fluid Q.ty Indicator (TKS System)

8 Annunciator Panel

9 Digital Audio Panel Garmin GMA350c

10 (optional) GCU 477 FMS

11 Trim position Indicators

TOP CABIN

14 LH ECU Switches

15 Engine LH Starter

16 Anti-Ice switches

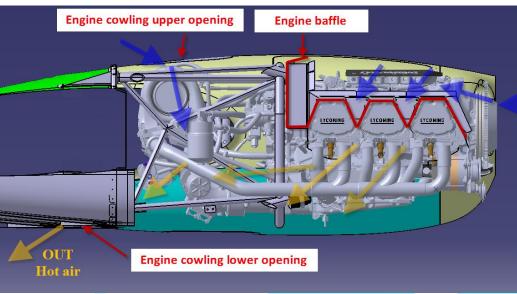
17 External Lighting switches

18 Engine RH Starter

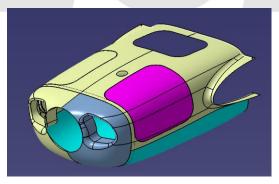
19 Internal Lighting switches

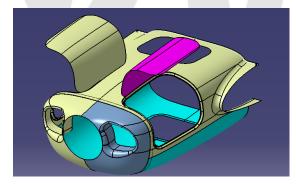
20 RH ECU Switches

21 Fuel Selectors


www.tecnam.com 22 Ottobre 2016

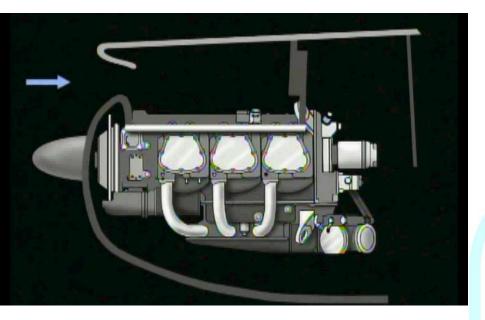
Baffles and Seals – Cooling test CHT LIMIT

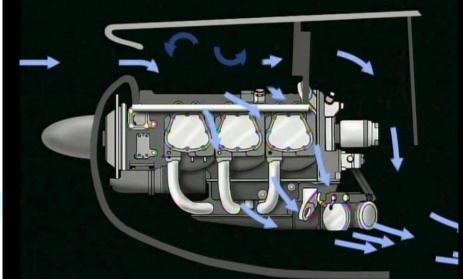



IN Cold air

www.tecnam.com 22 Ottobre 2016

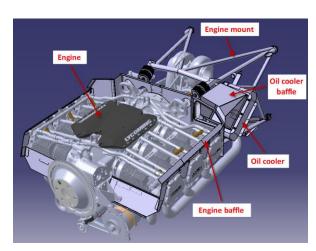
Baffles and Seals – Cooling test CHT LIMIT - Engine cowling design



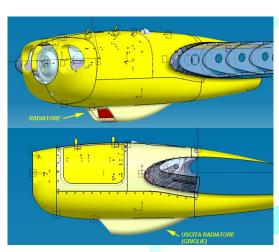

Main 3 design requirements for engine cowlings:

- 1. Furnish an adequate air flow on Cylinders;
- 2. Easily accessible for engine inspection by pilot and operators;
- 3. Fire proof proprieties;

Baffles and Seals – Cooling test CHT LIMIT – Engine cowling leakage (typical problem)



Oil Coolers, hoses and Lines


Main 3 design requirements for engine oil coolers position:

- 1. Good ventilation in order to reduce the oil Temperature;
- 2. Vibration and inertia load analysis on oil coolers supports;
- 3. Fire proof proprieties;

XMOD CHANGE for oil coolers position:

Preliminary

XMOD 007

XMOD 063 - Final conf.

e 2016 17

Most Important EASA Certification Requirements for airplane equipped with engines pistons:

CS 23.1041 - General:

The powerplant and auxiliary power unit cooling provisions must maintain the temperatures of powerplant components and engine fluids and auxiliary power unit components and fluids within the limits established for those components and fluids under the most adverse ground, water and flight operations to the maximum altitude and maximum ambient atmospheric temperature conditions for which approval is requested, and after normal engine and auxiliary power unit shutdown.

CS 23.1043 Cooling tests:

- (a) General. Compliance with CS 23.1041 must be shown on the basis of tests, for which the following apply:
- (1) If the tests are conducted under ambient atmospheric temperature conditions deviating from the maximum for which approval is requested, the recorded powerplant temperatures must be corrected under subparagraphs (c) and (d), unless a more rational correction method is applicable.

NEXT SLIDE....

www.tecnam.com 22 Ottobre 2016

Most Important EASA Certification Requirements for airplane equipped with engines pistons:

CS 23.1043 Cooling tests:

- (2) Corrected temperatures determined under sub-paragraph (a) (1) must not exceed established limits.
- (3) The fuel used during the cooling tests must be of the minimum grade approved for the engine(s).
- (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested.
- (5) For reciprocating engines the mixture settings must be the leanest recommended for climb.
- (b) Maximum ambient atmospheric temperature. A maximum ambient atmospheric temperature corresponding to sea-level conditions of at least 38° C (100° F) must be established. The assumed temperature lapse rate is 2° C (3.6° F) per 305 m (thousand feet) of altitude above sea-level until a temperature of -56.5° C (-69.7° F) is reached, above which altitude the temperature is considered constant at -56.5° C (-69.7° F). However, for winterisation installations, the applicant may select a maximum ambient atmospheric temperature corresponding to sea-level conditions of less than 38° C (100° F).

....NEXT SLIDE....

To the second se

Thanks for your time...

For the Tecnam Team, designing and building aircraft isn't just a job, its an extension of our passion for flying.

Paolo Pascale, Managing Director, Tecnam

