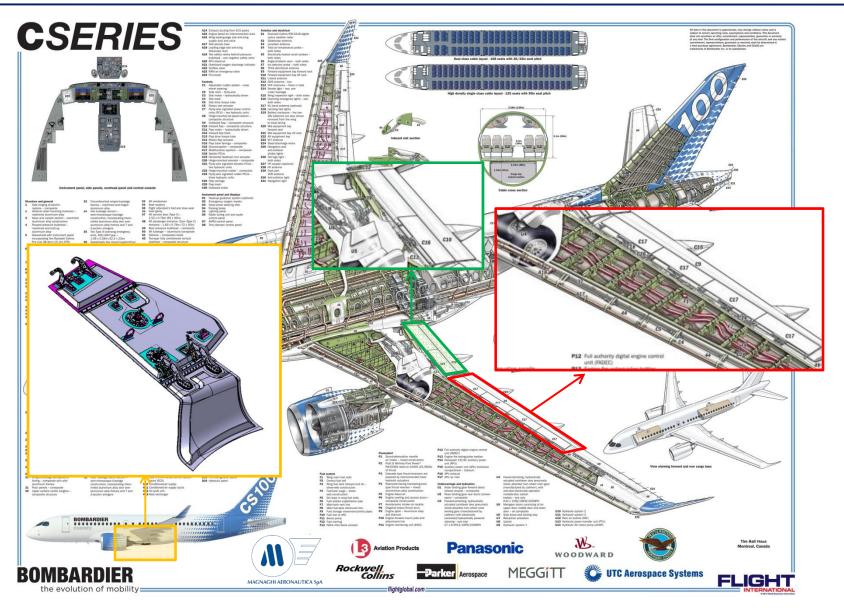
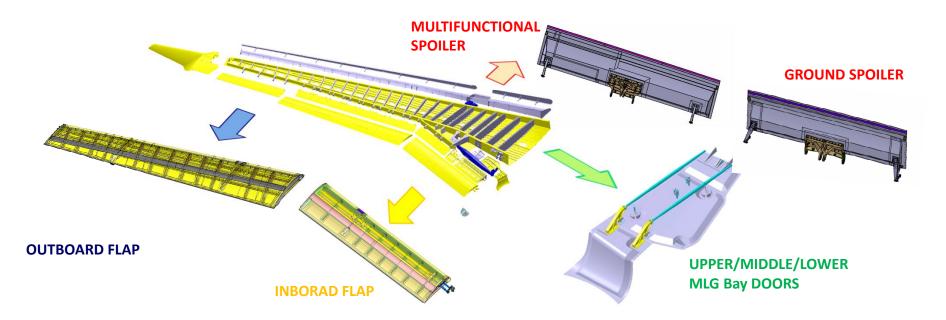


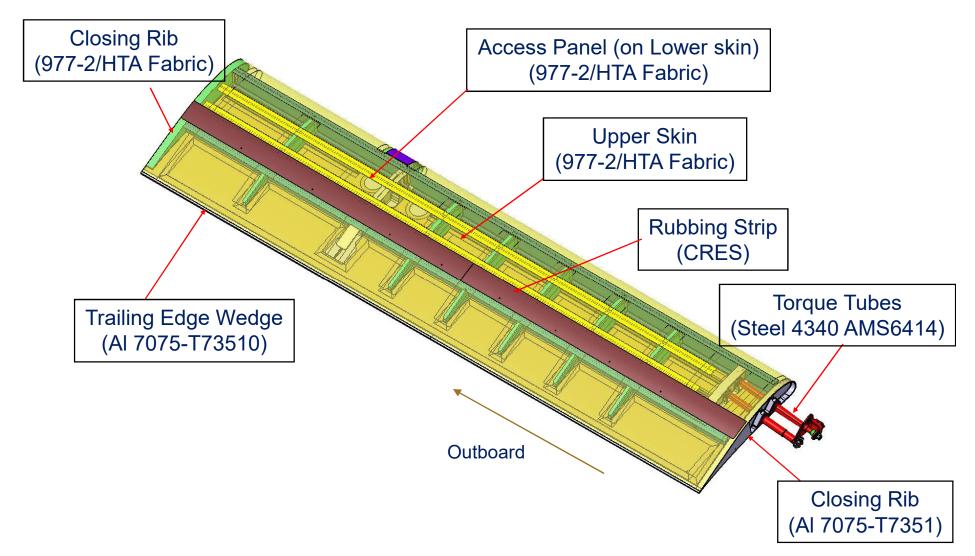
P. Persico Engineering, R&D Director (Magnaghi Aeronautica Group S.p.A.) S. Orlando Project Engineer (Magnaghi Aeronautica S.p.A.)



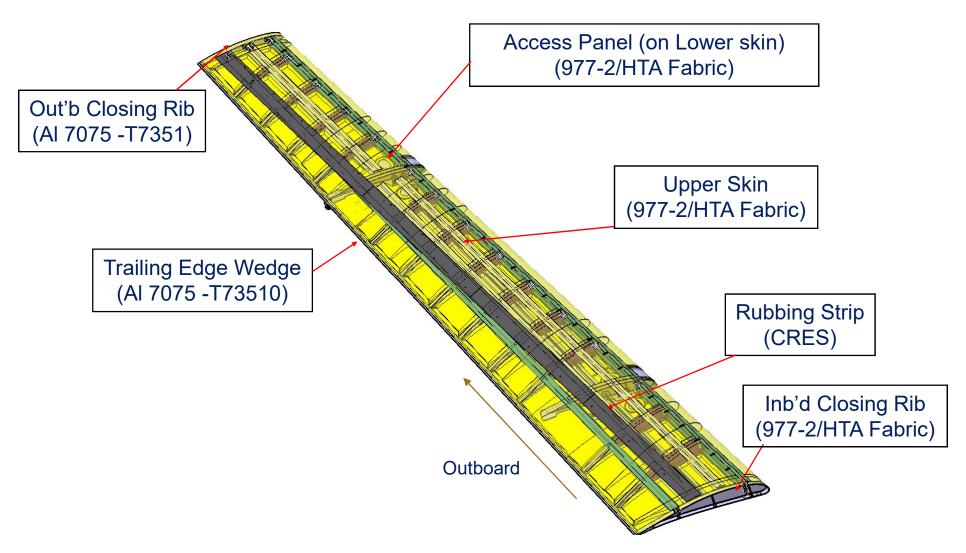
Keywords:

- Composite material certification
- Structure certification
- Dynamic analysis
- Non destructive inspection (NDT)

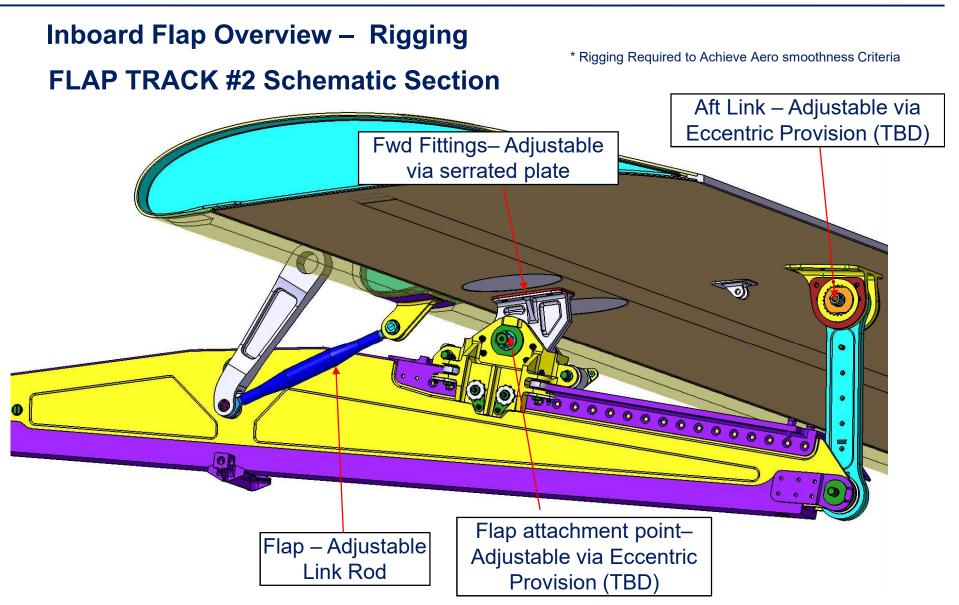



Magnaghi is **Bombardier Aerospace** TIER1 **Supplier** for CSERIES program (CS100 and CS300) providing the following fully qualified CFRP primary structure components:

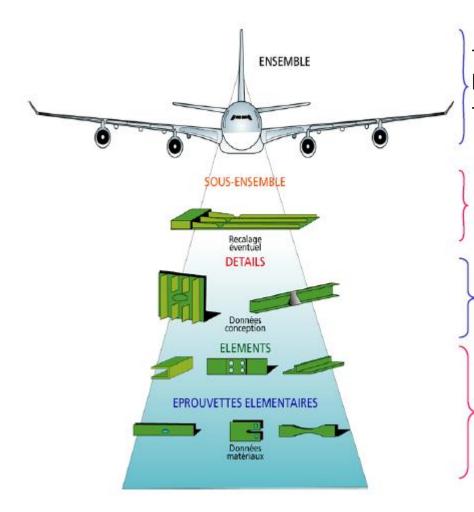
- LH/RH Inboard Flaps
- LH/RH Outboard Flaps
- LH/RH Ground Spoilers
- LH/RH Multifunctional spoilers 8-off (4 off LH 4 off RH)
- MLG Upper-Middle-Lower Doors



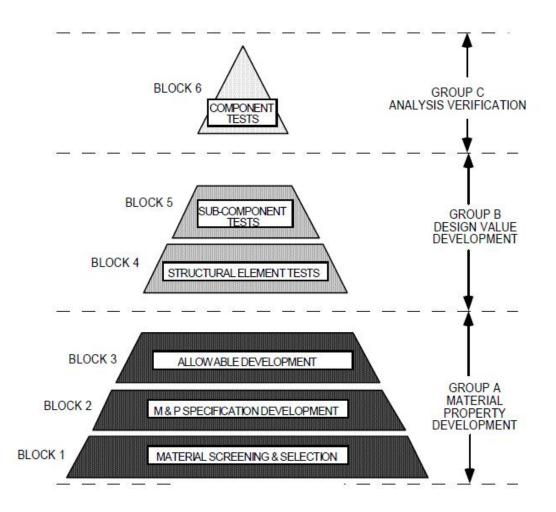
Inboard Flap Overview – "Baseline" Architecture



Outboard Flap Overview – "Baseline" Architecture



Certification Blocking Approach


 Final checking by integration of all the parameters

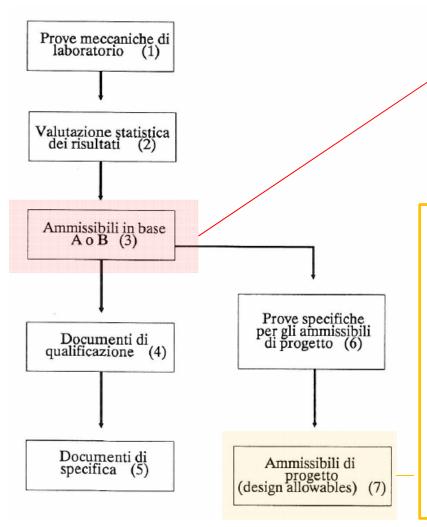
- Compliance with regulatory requirements

- Risk mitigation
- Sizing preliminary checking
- Assessment for future developments
 - Generation of allowables for non generic design features, or details showing low accessibility to calculation
 - Generation of allowables for materials or generic design features

Certification Blocking Approach from "field" point of view

The pyramid of tests, Why more tests with composite materials ?

• Low accessibility to calculation, then need to generate design values through complex test articles.


• **Sensitivity to environment**, then need to duplicate some tests in order to derive the ageing related knock down factors.

• **Material anisotropy**, then need to increase the test matrix at the coupon level to investigate various stacking sequences.

• **Higher mechanical property variability than for metals**, then need to increase the sample size in order to lower the knock down factors imposed in the derivation of the allowables (e.g. B values).

Allowable

- Ammissibile in base "A" ("A" basis): è il valore della proprietà meccanica al di sopra del quale almeno il 99% della popolazione di valori è atteso cadere con un grado di confidenza del 95%.
- Ammissibile in base "B" ("B" basis): è il valore della proprietà meccanica al di sopra del quale almeno il 90% della popolazione è atteso cadere con un grado di confidenza del 95%.

6.3.3 OPEN HOLE COMPRESSION

The OHC strength and strain are calculated directly from tests data for protruding <u>hole</u> that give B-Basis allowable for the worst environmental condition for this failure mode, the ETW one. Further knockdowns for the effect of a countersink and variations in <u>hole</u> diameter are also provided

$$\sigma_{OHC} = \sigma_{OHC_{baseline,ETW}} \times K_{f} \times K_{d} \times K_{w/d}$$

 K_{env} is reported in the graphs to permit to determine B-basis RTD values starting from graphs. $K_{B-basis}$ is reported in the graphs to show the knockdown factor applied. K_f is a factor applied for the effect of countersink dependant on the hole condition. K_d is a factor applied for variations in the hole diameter from the baseline tested value $K_{w/d}$ is a factor applied to account for the finite width correction when W/D ratio is below nominal value of 6 used on baseline coupons

Allowable

Basic material allowable, are developed at the laminate level, using MIL-HDBK-17 statistical procedures:

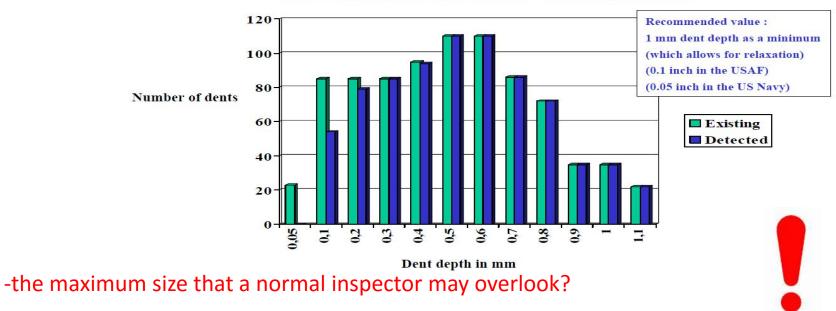
- Unnotched
- Filled-hole
- Open-hole
- Representative laminates
- Five to 16 batches

• Environmental effects accounted for with factors based on ratio of average values at environmental and room temperatures

Allowables

Design values test database includes:

- Coupon, elements, and subcomponents specimens
- Variations of temperature and moisture
- Variation within the manufacturing specification acceptance limits
- Laminates, effects of holes, fasteners, and environments representative of the C-Series structure and environment
- For design values derived from element and coupon level tests, average test data is calculated and a typical value is derived. Typical values are then reduced to get design values
- Design values derived from subcomponent tests are set at or below the test data


Up today for the C SERIES PROGRAM more than 1000 coupons have been tested. <u>Additional test are still in progress</u> (design modification and weight reduction)

DAMAGE IMPACT ALLOWABLES

ACJ 25 603 § 5.8 : It should be shown that impact damage that can be realistically expected from manufacturing and service, but not more than the established threshold of detectability for the selected inspection procedure, will not reduce the structural strength below ultimate load capability.

Defining detectability threshold

Results of an investigation carried out at EADS - Louis Bleriot research centre

Additional tests have been performed on coupons to establish the strength and strain capability when impacts giving an indentation greater then BVID, more than 1.5 mm

COMPOSITE SENSITIVITY TO LOW VELOCITY IMPACT DAMAGE

LARGE STATIC STRENGTH REDUCTIONS MAY OCCUR BEFORE DAMAGE BECOMES DETECTABLE

x 18

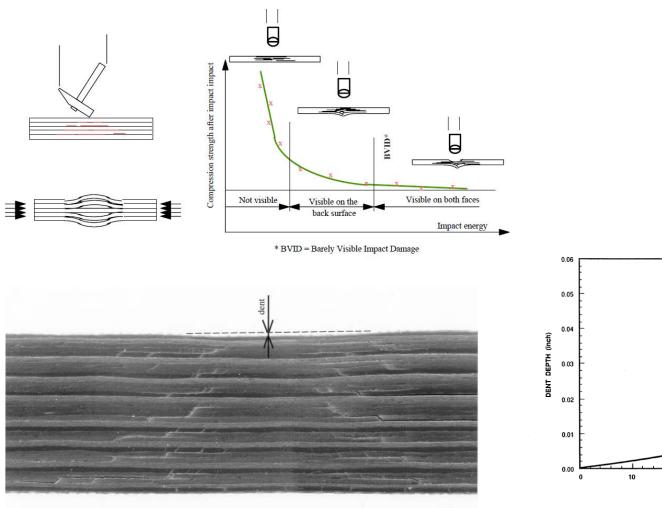


Figure 11. Relationship Between Dent Depth and Impact Energy for $0.20 \le t \le 0.25$ inch.

30

IMPACT ENERGY (ft-lb)

×

¥

20

×

×

xx x

х

40

 $E_{0.05} = 50$

60

50

CATEGORY 1 DAMAGE

Category 1 damage covers potential defects that can occur from the composite manufacturing process and Barely Visible Impact Damage (BVID) from assembly and in service. Category 1 Damage should cover all potential inherent defects in the structure, together with damage that is not expected to be detected, and is introduced into the test article for all static and composite fatigue testing.

CATEGORY 2 DAMAGES

Introduce Visible Impact Damage (VID), increased scratch depths and missing fasteners to the structure. Category 2 impacts are applied to specified locations in the composite flap structure to create VID up to cut-off energies (100 joule typically) specified for the C-series programme.

CATEGORY 3 DAMAGE

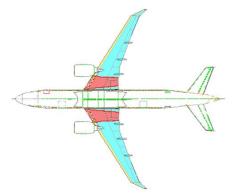
Introduced to the structure for the <u>residual strength check</u>, up to limit load with ECLF, and has been targeted at areas of high strain

CATEGORY 4 DAMAGE

discrete source damage is introduced to the structure required based on threat assessment and DSD component test results. It is used to test the structure to 70% limit load or DSD loads.

INCLUSIONS / DEFECT / SCRATCH

Inclusions are introduced throughout the outboard flap composite structure. It is intended to use inclusions to substantiate the effects of voids, delamination or porosity defects.


BARELY VISIBLE IMPACT DAMAGE (BVID) (CATEGORY 1)

Composite structures shall be capable of sustaining BVID at Ultimate Load to the Design Service Goal without temporary or permanent repair.

The impact energy cut-off values for the control surfaces are based on deterministic approach, generally from 30 to 60 J.

The dent depth thresholds of detectability for BVID are:

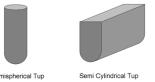
- 1mm applied under Detailed Visual Inspection (DVI)
- 2.5mm General Visual Inspection (GVI)

Additional Category 1 Damage Types:

Composite structures shall be capable of sustaining the additional damage types <u>at Ultimate</u> <u>Load</u> to the Design Service Goal without temporary or permanent repair.

Scratch damage – typ max 4.00" scratch in any direction (1 ply deep about)

VISIBLE IMPACT DAMAGE (VID) (CATEGORY 2 & 3)


Composite structures shall be capable of sustaining external VID at Limit load and for a period of operation before detection. <u>Categories 2 & 3 are damage levels which exceed BVID</u>

Category 2 damage must not degrade the structure below "k x Limit Load" capability.

Category 3 damage must not degrade the structure below Limit Load capability <u>but Level 2</u> <u>Damages, less detectable</u> than Level 3 <u>must sustain the ability to carry limit load between more</u> <u>detailed maintenance checks</u> as they are deemed to be less detectable.

Hence VID can range from damages just exceeding the BVID visibility criteria up to large through penetrations

Category 2 and 3 damages are subject to an energy cut off of >=100J

The simulation of Category 2 and 3 damages will include the use of impacting equipment of different diameter tips and the use of high velocity / low mass impactors to simulate impacts caused by runway debris or hail. <u>The effect of VID will be investigated in Levels 4</u> (Sub-Component and bench tests) and 5 (Full-Aircraft) Tests

VISIBLE IMPACT DAMAGE (VID) (CATEGORY 2 & 3)

ADDITIONAL CATEGORY 2 & 3 DAMAGE TYPES

Composite structures shall be capable of sustaining the additional damage types, listed below, at Limit Load between major inspections.

- Scratch damage 4.00" scratch in any direction, up 2 two plies deep (depth dependant on cured ply thickness)
- Lightning strike typical damage for max voltage strike on component
- Fastener damage Missing fastener or visible mis-installation

DISCRETE SOURCES OF DAMAGE (CATEGORY 4)

These damages are not subject to energy cut offs and often have unique impact foot prints. As a result, these damages will be substantiated by analysis and specific testing at the highest levels of the testing pyramid.

An assessment of potential sizes and energies for these damages will be performed by analysis. In most instances these will be covered by specific tests or specific damages applied to Level 4 and level 5 test articles in the testing pyramid

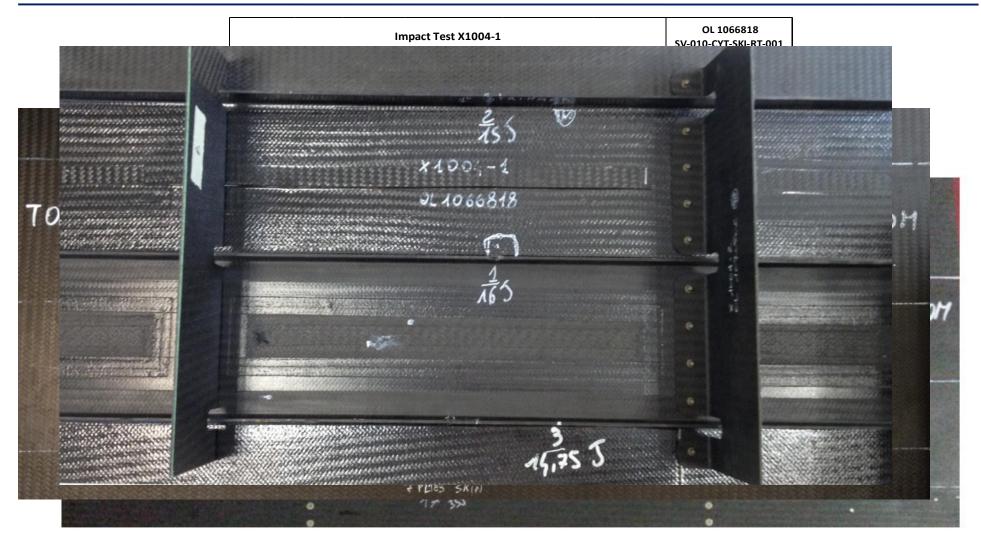
- Tyre Burst (by Analysis)
- Impact damage ground collision to trailing edge and flight components (by Analysis)
- Lightning Strike (by Test)
- <u>Bird strike (by Analysis/Test)</u>
- Rotor Disk Burst (not applicable)

IMPACT TRIAL TEST SETUP

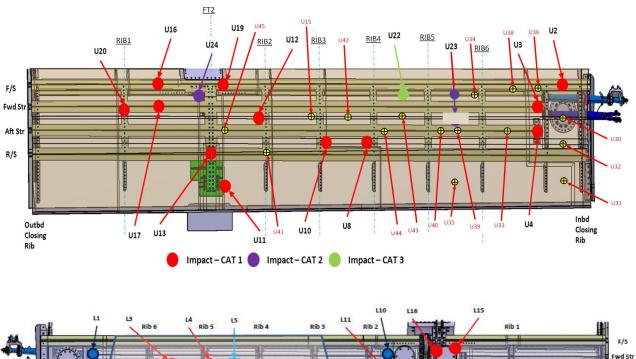
- Two Impactors have been used
- Manual gun impactor, capable to apply impact energies up to 110 J
- Tower impactor, capable to apply impacts energies up to 290 J

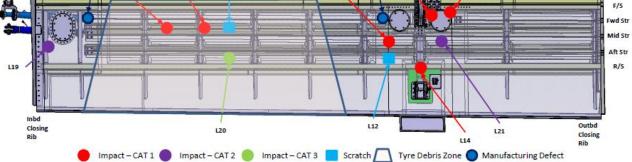
Manual Tower Impactor

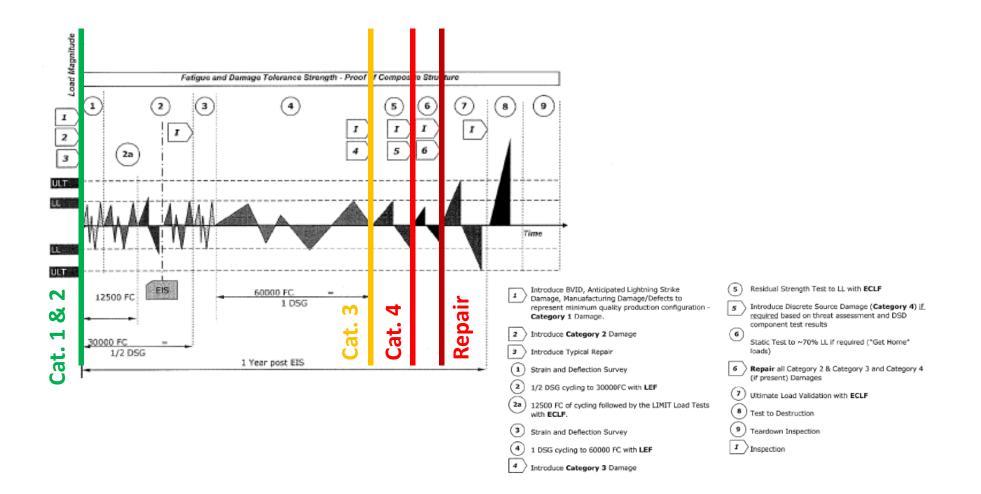
IMPACT TEST SETUP (USING CANTILEVER MACHINE)



IMPACT TEST SETUP (USING GUN)






IB Flap Impact locations

STATIC AND FATIGUE TEST PLAN

EFFECTS OF DEFECTS

Effects of manufacturing anomalies within and outside the process specification limits were evaluated in tests with coupons, elements, and subcomponents

- Porosity
- Fiber waviness
- Delamination
- Ply gaps
- Foreign material inclusions

Inclusions are introduced throughout the outboard flap composite structure. It is intended to use inclusions to substantiate the effects of voids, delamination or porosity defects. A double stack of Teflon inserts shall be placed in the critical parts established from stress analysis.

Two types of insert have been defined and the sizes and shapes are detailed below:

- 1.Round Dia= 0.50in thickness 0.015in
- 2.Square 0.50in x 0.50in thickness 0.015in

Topics to be addressed when presenting a certification plan to the Airworthiness Authorities

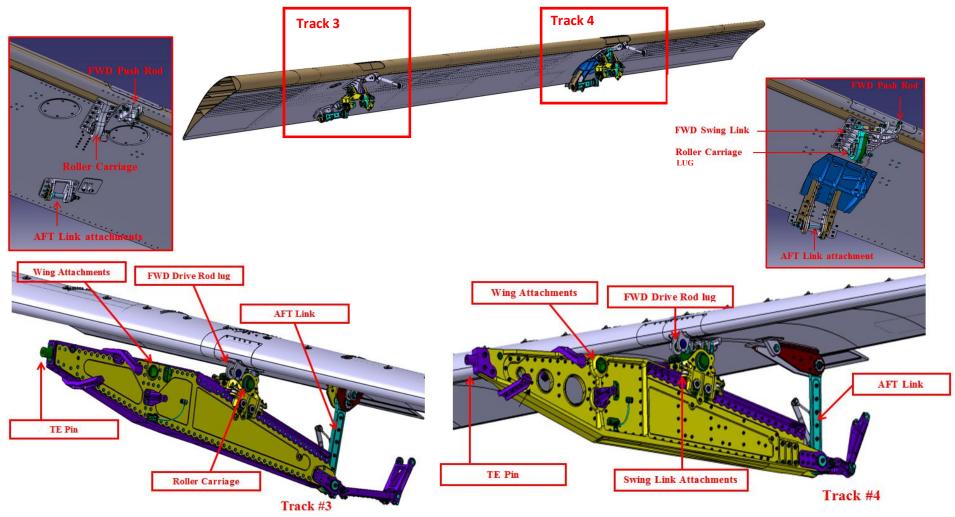
- STRUCTURE DESCRIPTION
- STRUCTURAL SUBSTANTIATIONS
- FABRICATION METHODS
- QUALITY ASSURANCE
- AIRWORTHINESS

This documentation will include at least :

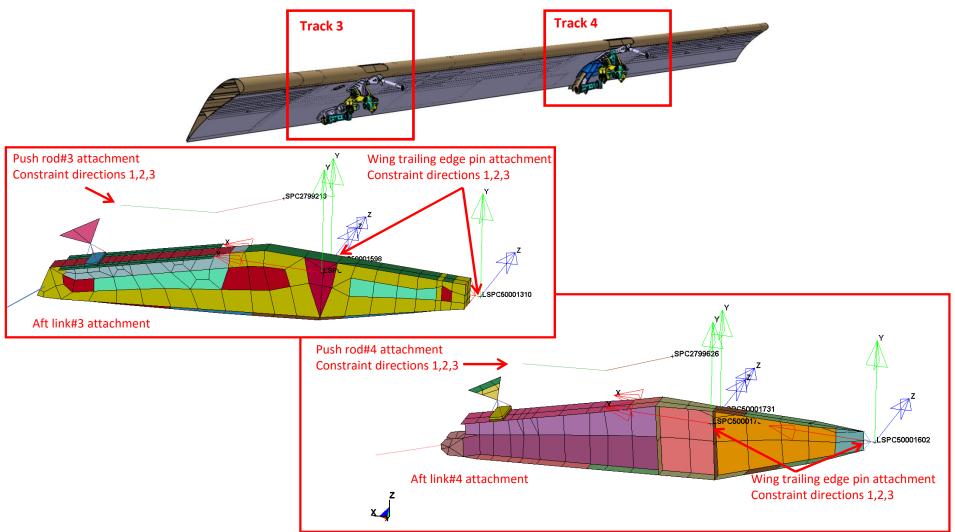
The Certification plan (with the associated test plans)

The Composite Summary Plan and Report

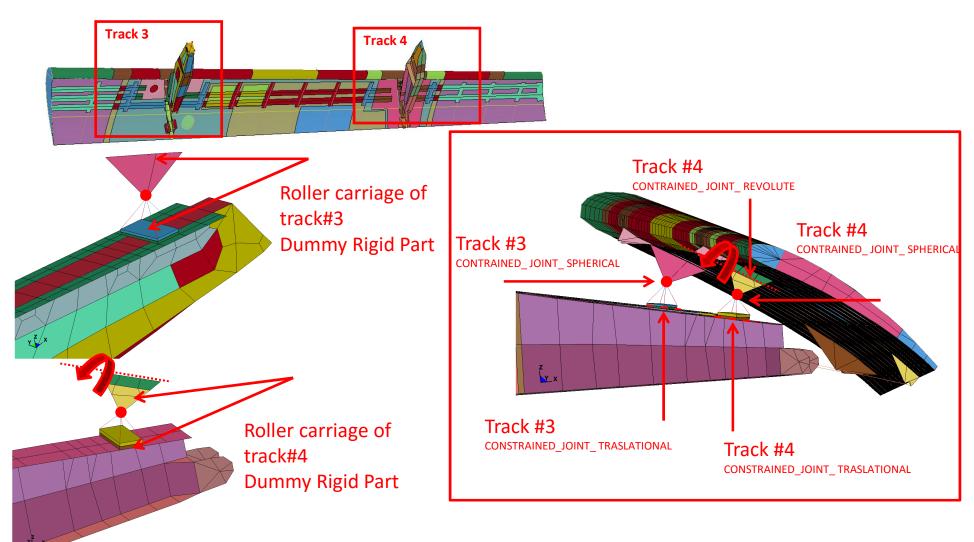
The Airframe Certification Documents


*The Composite Summary Report is the Composite Summary Plan updated with test results

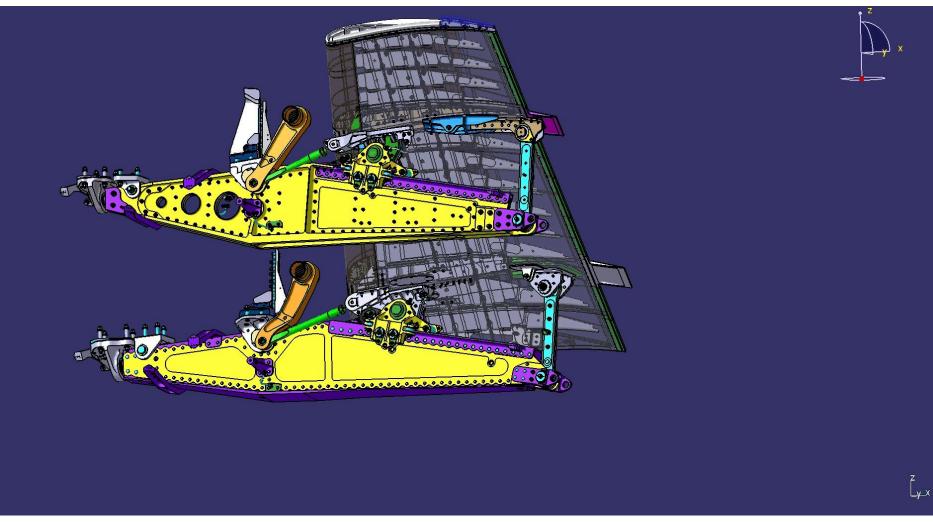
BIRD IMPACT ANALYSIS AND CERTIFICATION PROCESS



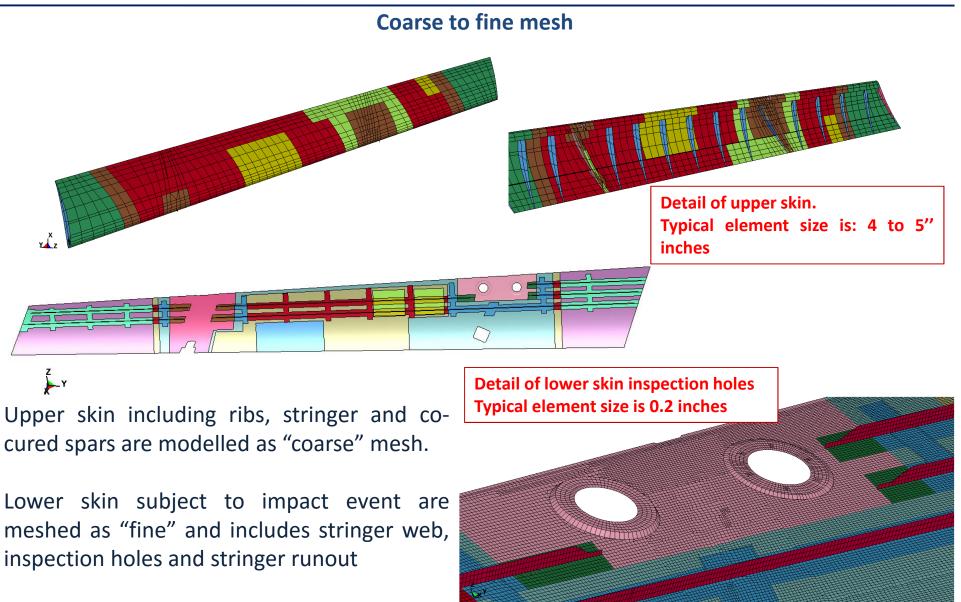
Description of Flap track attachment

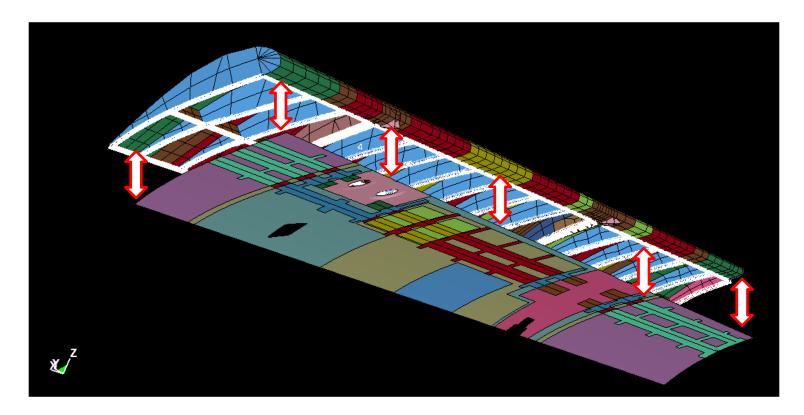


FEM External Constraints



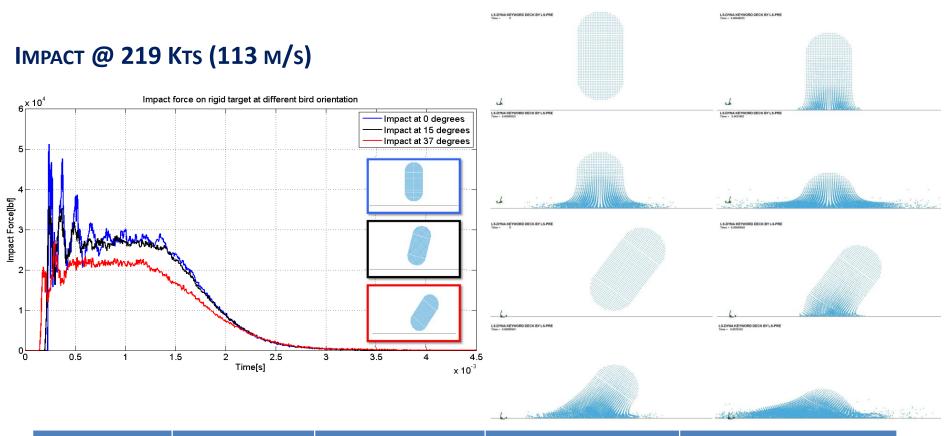
Internal Constraints


Flap Kinematics


Y Ĵz

Certificazione e Controlli non Distruttivi

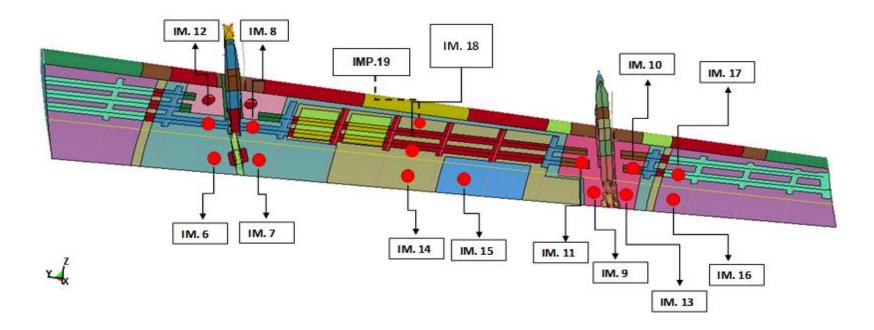
Coarse to fine mesh



<u>TIED_SHELL_EDGE TO_SURFACE_OFF-SET</u> contact formulation is used to allow shear load transmission between lower skin, ribs, and spar feet.

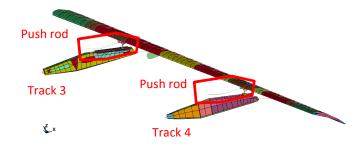
This approach allows to increase the level accuracy where a detailed investigation is required. **It ensures a very high mesh density gradient going from 5" to 0.2".**

Calibration of bird impact model

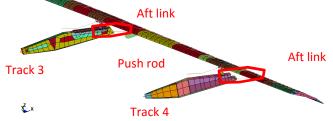


Velocity=219 Knot, Bird Mass=4 Ib	Momentum Transfer [lbf]	Empirical Formula [lbf]	LS-DYNA MAT_RIGID [lbf]	LS-SYNA MAT_ELASTIC [lbf]
0°	48596	37790	51228	60199
15°	46940	36502	35776	54807

36


BIRD IMPACT ANALYSIS. PLAN OF SIMULATION IMPACT

The selection criteria of the Test Impact Point is based on the most severe skin and metallic attachments damage resulting from the model simulation.


Bird Impact analysis. Result

·			FWD push				FWD push rod track #4					
Flap	Impact ID	Max Bird Impact	Minimum Peak from Bird Strike	Maximum Peak from Bird Strike	(Max DesignLoad-Max Bird Impact Force)/Max DesignLoad	Flap	Impact ID	Max Bird Impact	Minimum Peak from Bird Strike	MaximumPe ak from Bird Strike	(Max DesignLoad-Max Bird Impact Force)/Max DesignLoad	
Deployment		Force	Analysis	Analysis		Deployment		Force	Analysis	Analysis		
37 deg	18	13292	-5889	5097	74%	37 deg	18	13292	-7072	5324	49%	
37 deg	6	13986	-14320	1203	36%	37 deg	6	13986	-6574	3242	52%	
37 deg	7	13140	-14430	313	36%	37 deg	7	13140	-5256	4859	62%	
37 deg	8	13694	-10520	5775	53%	37 deg	8	13694	-4241	5302	69%	
37 deg	9	13237	-5235	2108	77%	37 deg	9	13237	-9764	1708	29%	
37 deg	10	13503	-5041	2533	77%	37 deg	10	13503	-9108	5702	34%	
37 deg	11	13585	-2766	2281	88%	37 deg	11	13585	-8582	4240	38%	
37 deg	12	14122	-9745	5413	56%	37 deg	12	14122	-4649	4612	66%	
37 deg	13	14008	-4886	773	78%	37 deg	13	14008	-9044	630	34%	
37 deg	14	14599	-6878	400	69%	37 deg	14	14599	-5463	2267	60%	
37 deg	15	13069	-2771	419	88%	37 deg	15	13069	-2478	51	82%	
37 deg	16	11835	-5382	1916	76%	37 deg	16	11835	-11350	1486	17%	
37 deg	17	14963	-5325	899	76%	37 deg	17	14963	-6081	6796	56%	
25 deg	18	8273	-2007	1444	91%	25 deg	18	8273	-1650	522	88%	
25 deg	7	11500	-6400	1552	71%	25 deg	7	11500	-2338	1626	83%	
25 deg	19	8325	-1283	2633	94%	25 deg	19	8325	-661	1493	95%	

Bird Impact analysis. Result

			AFT LINK #3]				AFT L	INK #4		
Flap	Impact ID	Max Bird Impact	Peak from Bird	Peak from Bird	(Max DesignLoad-Max Bird Impact Force)/Max DesignLoad	Flap		Impact ID	Max Bird Impact	Minimum Peak from Bird Strike	MaximumPe ak from Bird Strike	(Max DesignLoad-Max Bird Impact Force)/Max DesignLoad	
Deployment		Force	Strike Analysis	Strike Analysis			Deployment		Force	Analysis	Analysis		
37 deg	18	13292	-2079	8679	44%		37 deg	18	13292	-1748	8987		38%
37 deg	6	13986	-5301	19830	-27%		37 deg	6	13986	-712	3394		77%
37 deg	7	13140	-942	19040	-22%		37 deg	7	13140	-2072	2338		84%
37 deg	8	13694	-1558	13960	11%		37 deg	8	13694	-1302	799		94%
37 deg	9	13237	-1916	3858	75%		37 deg	9	13237	-3169	17050		-18%
37 deg	10	13503	-1573	1614	90%		37 deg	10	13503	-3710	12250		15%
37 deg	11	13585	-1479	5277	66%		37 deg	11	13585	-1766	9229		36%
37 deg	12	14122	-4805	12210	22%		37 deg	12	14122	-1565	2561		82%
37 deg	13	14008	-2082	2723	83%		37 deg	13	14008	-2018	18210		-26%
37 deg	14	14599	-5862	12350	21%		37 deg	14	14599	-1079	11500		21%
37 deg	15	13069	-185	382	98%		37 deg	15	13069	-835	1859		87%
37 deg	16	11835	-2085	2024	87%		37 deg	16	11835	-381	14170		2%
37 deg	17	14963	-1000	1239	92%		37 deg	17	14963	-3653	8982		38%
25 deg	18	8273	-106	6335	59%		25 deg	18	8273	-893	5339		63%
25 deg	7	11500	-998	14850	5%		25 deg	7	11500	-1807	1855		87%
25 deg	19	8325	-1603	4104	74%		25 deg	19	8325	-2543	5486		62%

Bird Impact analysis. Result

	Spar Strain	(Max DesignLoad-Max Bid Impact Force)/Max DesignLoad								
Flap Deployement angle	Impact ID	Damage	MS		AFT Link 3		FT Link 4	FWD Push 3	FWD Push 4	
37 deg	6	D	N/A		-27%		77%	36%	52%	
37 deg	7	F-T	N/A	N	-22%		84%	36%	62%	
37 deg	8	F-N	-0.09		11%		94%	53%	69%	
37 deg	9	D	N/A		75%	N	-18%	77%	29%	
37 deg	10	S	0.1		90%		15%	77%	34%	
37 deg	11	S	-0.07		66%		36%	88%	38%	
37 deg	12	F-N	0.4		22%		82%	56%	66%	
37 deg	13	D	N/A		83%		-26%	78%	34%	
37 deg	14	D			21%		21%	69%	60%	
37 deg	18	F-N	-0.16		44%		38%	74%	49%	
37 deg	15	D	N/A		98%		87%	88%	82%	
37 deg	16	F-N	N/A		87%		2%	76%	17%	
37 deg	17	F-T	-0.12		92%		<mark>38</mark> %	76%	56%	
25 deg	7	F-N	N/A		5%		87%	71%	83%	
25 deg	18	F-N	0. 1478 46154		59%		63%	91%	88%	
25 deg	19	D	N/A		74%		62%	94%	95%	

F Damage

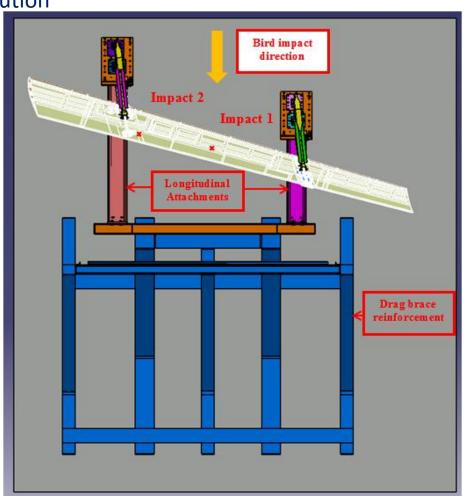
P Bird penetration

N Not penetration

T Partially penetrated

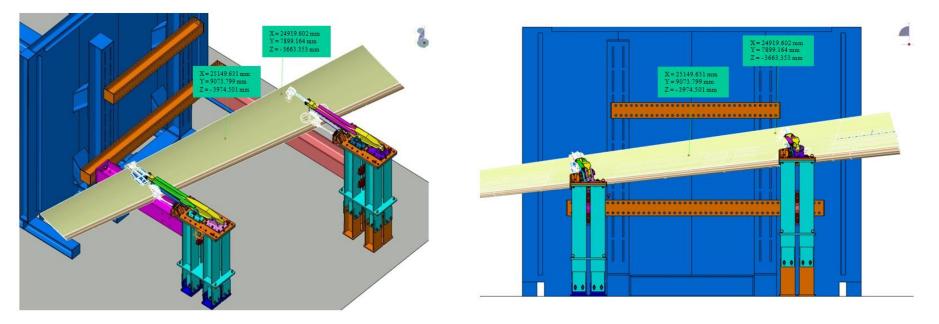
S Stringer failure

D Diverted



Bird Impact Test

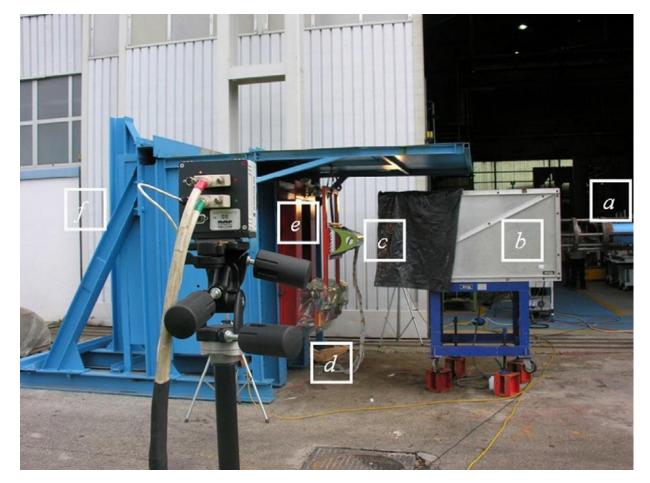
AleniaAermacchi have been selected by Magnaghi as LAB test supplier for bird strike test



Bird Impact Test Rig Layout

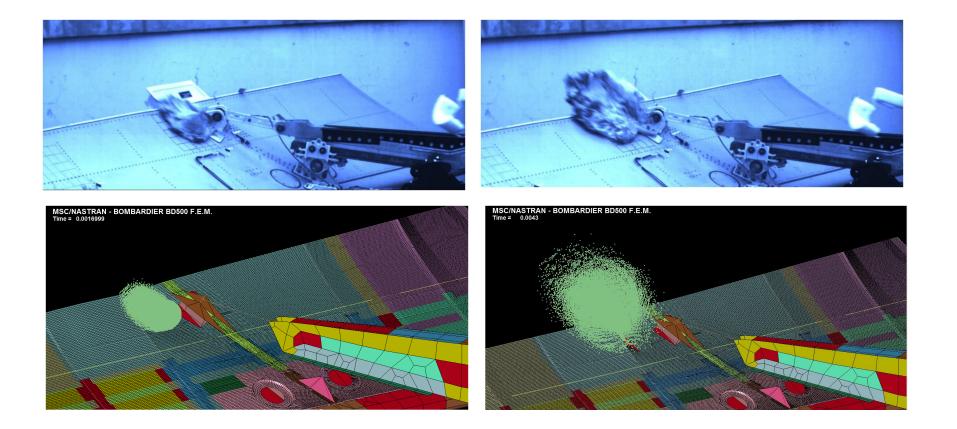
«Dummy tracks» fully reflecting actual aircraft attachment in terms of stiffness and constraints have been provided to LAB test supplier

Bird impact test on TRACK+FLAP has been performed on the basis of the most critical impact point selected by analysis



Bird Impact Test Facilities

Bird Impact Test high speed acquisition camera



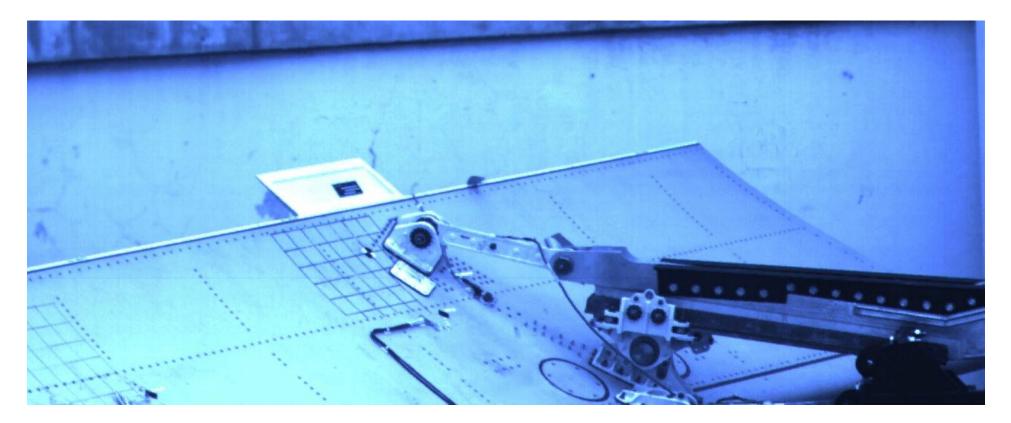
Fixture and scenario of a bird-strike test.

- a air cannon bore;
- b velocity measure device;
- c test article;
- d high speed camera;
- e test bed;
- f safeguard screen;
- g load cell.

Bird Impact Test – Impact Point 1

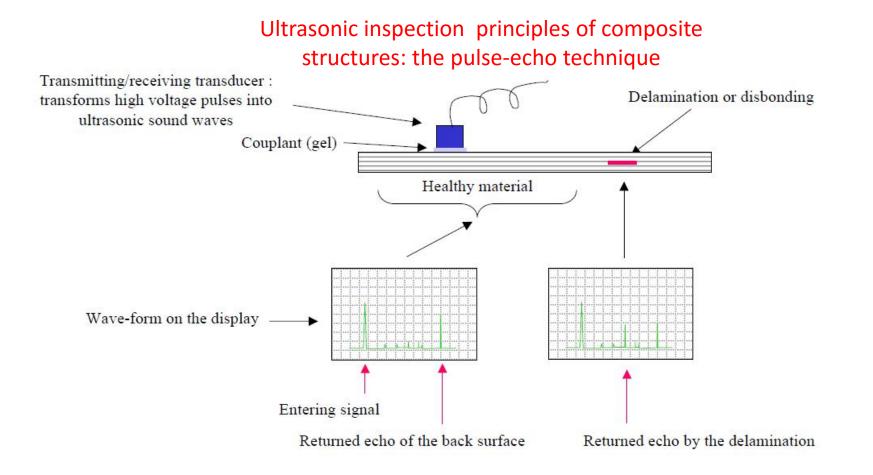

Bird Impact analysis

MSC/NASTRAN - BOMBARDIER BD500 F.E.M. Time = 0

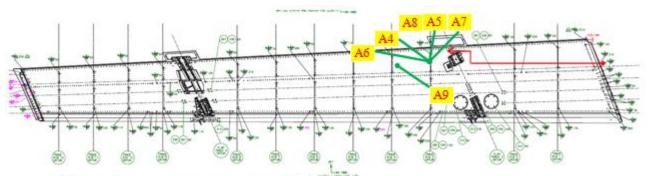


Bird Impact Test – Impact Point after impact

C-Series Bird Impact Test Inboard Flap

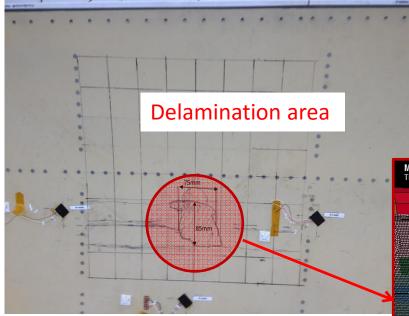


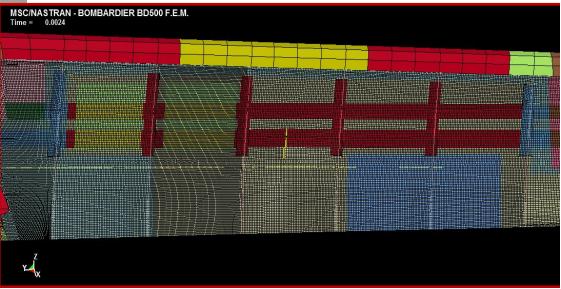
NDT inspection after the Impact


After the each impact all internal and external parts need to be subjected to inspection for:

-delamination (ultrasonic inspection) -crack and failure (Borescope Probe)

VISUAL INSPECTION BY USING BORESCOPE PROBE


/97/2915 14:43


MSC/NASTRAN - BOMBARDII Time = 0.0081999

Failure of composite lower skin+trailing edge rib foot was predicted by model simulation

VISUAL INSPECTION BY USING OF HIGH DEFINITION BORESCOPE PROBE COMPARISON WITH PREDICTION


Failure of web stringer (including foot and lower skin) was predicted by model simulation

VIDEO

C-SERIES TEST VEHICLE #1 take-off from Montreal on September 16th, 2013

