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OUTLOOK 
 • About the Lecturer 

• Design Criteria Evolution  

• Fatigue in Metallic Components 

– Fatigue Models: Uniaxial Stress Based and Strain Based Fatigue 

– Damage Cumulation Rule 

– Cycles Definition and Counting 

– Stress Concentration and Notch Factors 
 

• Multiaxial (FEM assisted) Fatigue Analysis 
 

• Damage Tolerance Analysis (FEM assisted) 

– Linear Elastic Fracture Mechanics 

– Stress Intensity Factors 

– Crack Growth 

– Inspection Intervals 
 



Napoli 2017 Fatigue and Damage Tolerance  
 

24. April 2017 3 
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• Senior Stress Engineer - Airbus A380 Trent 900 Nacelles 
 

• Senior Stress Engineer - Airbus A380 Main Deck Cargo Door 
 

• Chief Stress Engineer Trainers/Coordinator Fatigue Specialists - 
Pilatus Aircraft (PC-9, PC-9(M), PC-7MkII, PC-21) 
 

• Lecturer - Fatigue-Damage Tolerance at Universities of Zürich, 
Brescia, Parma, Milano, Napoli 
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1953 – COMET ACCIDENTS 

• 1952 – Enter Service 

• From 1953 - Accidents 

– 1954: In flight Failure at 30’000 ft (after 1286 missions) 

– 1954 (after 16 days): In flight Failure at 35’000 ft (after 903 missions) 

– … 
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1953 – COMET ACCIDENTS 
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SAFE-LIFE DESIGN 

• A safe-life design is such that the structure is able to withstand, 
without catastrophic failure, the repeated loads of variable 
magnitude expected in service throughout its operational life.  

• The structure is retired or replaced at the safe-life to prevent the 
structure from developing fatigue cracks.  

• For a safe-life structure, fatigue failure occurs when a crack is 
found, therefore the failure concept is related to the presence of 
a detectable crack. 

• Since a safe-life evaluation usually does not include 
demonstration of crack growth rates or residual strength 
capability, we assume that the development of a detectable 
crack may result in catastrophic failure of the structure.  

• The calculation process is based on crack initiation stage of the 
fatigue process. 
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SAFE-LIFE DESIGN 

• By definition, with such concept, no inspections are defined for 
inadvertent cracks (originated during manufacturing, during 
installation, during service for accidental events, or pre-existing 
in the material). 

 

• Should cracks, for any reason (also evaluation errors at design 
phase), be generated, these, which are ‘unmonitored, will 
propagate during the Service Life and could lead to catastrophic 
failures. 
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FAIL-SAFE DESIGN 

• A fail-safe design is a design that retains its required residual 
strength after the failure or partial failure of a principal structural 
element. 

 

• A fail-safe design typically consists of the fail-safe component or 
primary structural element, and a redundant or backup 
structural element. 

 

• A fail-safe design is, therefore, often said to be a redundant 
design or a multi-load path design. 
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1967 – F-111 ACCIDENTS 

• 1964 – First Flight 

• From 1967 – Accidents due to production defects 
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1967 – F-111 ACCIDENTS 
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DAMAGE TOLERANT DESIGN 

• Cracks are assumed by definition always existing in the 
structure: if an inspection doesn’t reveal cracks, it is assumed 
that cracks are small as the inspection instrument resolution. 

 

• A structure can retain its required Residual Strength for a period 
of use after the structure has sustained a given level of fatigue, 
corrosion, accidental or discrete source damage. 

 

• The concept of inspections is introduced. A Damage Tolerant 
design is intrinsically safer than the Safe Life, as the structure is 
regularly inspected for cracks.  
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1988 – ALOHA FLIGHT 243 ACCIDENT 
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1988 – ALOHA FLIGHT 243 ACCIDENT 
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1988 – ALOHA FLIGHT 243 ACCIDENT 

Knife Edge propagating cracks 
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WIDESPREAD FATIGUE DAMAGE (WFD) 

• WFD in a structure is characterized by the simultaneous 
presence of cracks at multiple points, that are of sufficient size 
and density such that, the structure will no longer meet its 
damage tolerance requirement and could fail. For example, 
small fatigue cracks developed along a row of fastener holes 
coalesce, this moves to adjacent sites and propagates.  

 

• The objective of a designer is to determine when large numbers 
of small cracks could degrade the joint strength to an 
unacceptable level. 
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FATIGUE IN METALLIC COMPONENTS 

• Fatigue is the progressive and localized structural damage that 
occurs when a material is subjected to cyclic loading. 

• If the cyclic stresses are above a certain threshold value 
(endurance limit) (for most materials used in lightweight 
structures the threshold is 0), microscopic cracks nucleate 
(generally at notches, where there are stress concentrations) 
after a certain number of cycles. 

• Once nucleated, the crack grows up to the critical size, at which 
the structure suddenly collapses (the remaining section cannot 
withstand statically the applied cyclic load). 

• The fatigue failure occurs at cyclic stress levels which are below 
the allowable static stress. 
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FATIGUE IN METALLIC COMPONENTS 
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FATIGUE MODELS 

• There are many fatigue methods that can be used. They belong 
to two different classes: 

 

– Stress based S-N  

  (usually for the High Cycle Fatigue - HCF) 

 

– Strain based e-N  

  (usually for the Low Cycle Fatigue - LCF) 

(This is computationally more involving because elastic-plastic stress 
and strains have to be calculated) 
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FATIGUE MODELS 

• Stress based: S-N curves 

 

Endurance Limit 

𝑆𝑎 = 𝐶 ∙ 𝑁𝑚    Basquin Equation  
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FATIGUE MODELS 

• Stress based: S-N curves 

– S-N curves have to be ‘adapted’ to the real cases by 
including: 

• Mean Stress Effects (Goodman, Gerber, Soderberg, Morrow, 
SWT, Walker, …) 

• Temperature effects 

• Surface conditions 

• Loading modes 

• Size effects 

• Reliability factor 

• ... 

 
𝑆𝑎

𝑆𝑎
𝑒𝑞 +

𝑆𝑚

𝑆𝑈
= 1   → 𝑆𝑎

𝑒𝑞 =
𝑆𝑎

1 −
𝑆𝑚
𝑆𝑈
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FATIGUE MODELS 

• Stress based: the ‘Metallic Materials Properties Development and 
Standardization’ (MMPDS) Handbook provides S-N curves for 
many tested metallic material alloys. 

• The used model is the following: 

 
𝐿𝑜𝑔 𝑁𝑓 = 𝐴 − 𝐵 ∙ 𝐿𝑜𝑔 𝑆𝑒𝑞 − 𝐶  

 

𝑆𝑒𝑞 = 𝑆𝑚𝑎𝑥 1 − 𝑅 𝑝 

 

• Charts provide, for a given material 
alloy and a given Kt, curves for 

specific stress ratios 𝑅 = 𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥
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FATIGUE MODELS 

• Strain based: e-N curves 

– Instead of S-N curves (Basquin equation) the basic model is 
the Coffin-Manson equation 

 

 

 

∆ε

2
=

𝜎𝑓′

𝐸
2𝑁𝑓

𝑏
+ 𝜀𝑓′ 2𝑁𝑓

𝑐
 

𝜎𝑓′ is the Fatigue Strength Coefficient 

b is the Fatigue Strength Exponent 

𝜀𝑓′ is the Fatigue Ductility Coefficient 

c is the Fatigue Ductility Exponent 
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FATIGUE MODELS 

• Strain based: e-N curves 

– Also Coffin-Manson curves have to be ‘adapted’ to the case 
under analysis by including: 

• Mean Stress Effects (SWT, Morrow, Manson-Halford, …) 

• Temperature effects 

• Surface conditions 

• ... 

– As said above applying the strain base method implies the 
additional burden of calculating elastic-plastic stress/strain 
sequences out of FEM based elastic stress/strain sequences 

• Neuber or Equivalent Strain Energy Density (Glinka) in case of 
uniaxial fatigue, … 

• … way more complex approaches in case of multiaxial fatigue 
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FATIGUE MODELS 

• Strain based: e-N curves 
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FATIGUE MODELS 

• Whatever the method is (Stress based or Strain based), damage 
for each cycle is obtained by entering in the modified curve 
(Basquin or Coffin-Manson) with stress amplitude (for stress 
based method) or strain amplitude (for strain based method) 
and extracting a number of cycles which represents the Life 
related to that specific cycle, i.e. how many of those cycles 
(constant amplitude) the component survives before a crack is 
nucleated. 
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• Miner’s Linear damage cumulation 

Crack Nucleation 
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• In case of variable amplitude sequences 

 

 

 

 

 

 

 

 

 

      (where T defines the sequence metric) 
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DAMAGE CUMULATION RULE 
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CYCLES DEFINITION – CYCLE COUNTING 

• What is a cycle?  

• How a stress cycle is defined?  

• What is the physical meaning? 
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CYCLES DEFINITION – CYCLE COUNTING 

• What is a cycle?  

• How a stress cycle is defined?  

• What is the physical meaning? 
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CYCLES DEFINITION – CYCLE COUNTING 

• Rheological Model 
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CYCLES DEFINITION – CYCLE COUNTING 
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CYCLES DEFINITION – CYCLE COUNTING 

• In order to avoid attacking the problem with an ‘incremental 
approach’ (which is computationally time consuming in case of 
long time histories), a method/tool is needed to extract cycles 
(i.e. closed loops) out of a Variable Amplitude spectrum. 

 

• The most popular tool is the Rainflow Cycle Counting (accepted 
world-wide as the most appropriate for extracting stress/load 
cycles for fatigue analyses,  the algorithm was developed 
by Endo and Matsuishi in 1968) 

 

• In order to reduce computational time, normally signals are 
filtered (e.g. Racetrack Filter) before being counted: removal of 
non-turning points and ‘small’ cycles (i.e. negligibly damaging) 
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CYCLES DEFINITION – CYCLE COUNTING 

• Two consecutive reversal points, i 
and i-1, within a sequence represent 
a peak and valley of a cycle if the 
conditions applies 

 
𝑆𝑖−1 < min 𝑆𝑖−2, 𝑆𝑖 ; 𝑆𝑖 > m𝑎𝑥 𝑆𝑖−1, 𝑆𝑖+1  

 

or 

 
𝑆𝑖−1 > max 𝑆𝑖−2, 𝑆𝑖 ; 𝑆𝑖 < m𝑖𝑛 𝑆𝑖−1, 𝑆𝑖+1  
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CYCLES DEFINITION – CYCLE COUNTING 

• Sequence effects…reminding the Comet… 
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STRESS CONCENTRATION FACTORS 

• Geometric discontinuities in a structure such as notches, holes, 
shoulders, grooves, … are details where stress concentrations 
occur (stress raisers).  

• The Stress Concentration Factor Kt is the ratio between the local 
stress (maximum), at the stress raiser, and the far field 
(undisturbed), nominal stress 

 

𝐾𝑡 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 

 

• Because of higher localized stresses, fatigue failure develops 
from such details. 

• A collection of calculated stress concentration factors is provided 
by Peterson. 
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STRESS CONCENTRATION FACTORS 
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STRESS CONCENTRATION FACTORS 

• Today, detailed Finite Element Models can be used to calculate 
numerically Kt for specific geometrical details 

 30.77 

𝑲𝒕 =
𝝈𝒎𝒂𝒙

𝝈𝒏𝒐𝒎𝒊𝒏𝒂𝒍
=

𝟑𝟎. 𝟕𝟕

𝟏𝟎
= 𝟑. 𝟎𝟕𝟕 

10 MPa Far field tension 

10 MPa Far field tension 

100 mm 

10 mm 

Nominal Stress 

Nominal Stress 

Notch Stress 

𝐾𝑡 =
30.77

10
= 3.077 
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NOTCH FACTORS 

• The use of theoretical Kt, coming from the assumption of ideal 
linear elastic materials, is not appropriate in case of applied 
alternating loads, i.e. fatigue. 

• The use of Effective Stress Concentration Factors, or Notch 
Factors Kf is more appropriate in such cases. 

• Defined as the Fatigue Strength ratio 

 

𝐾𝑓 =
𝑆𝑚𝑜𝑜𝑡ℎ 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑁𝑜𝑡𝑐ℎ𝑒𝑑 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
=

𝑆𝑒,𝑠𝑚𝑜𝑜𝑡ℎ

𝑆𝑒,𝑛𝑜𝑡𝑐ℎ𝑒𝑑
 

 

 

 

• It is experimentally calculated (at long lives, i.e. >106 cycles). 
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NOTCH FACTORS 

• Kf, differently from Kt, is not only geometry and load dependent, 
but also material dependent: 

 

𝐾𝑓 = 1 + 𝑞 𝐾𝑡 − 1 = 1 + 
𝐾𝑡 − 1

1 + 𝑎
𝑟 
      <  𝐾𝑡 

 

     r = notch tip radius,    a = material constant,   q = notch sensitivity factor 

 

• As a material length constant is involved, it implies that two 
scaled geometries have same Kt but different Kf 

• For a given material, the smaller the notch is (small r), the 
smaller the notch sensitivity is 



Napoli 2017 Fatigue and Damage Tolerance  
 

24. April 2017 46 

NOTCH FACTORS 

• A way to interpret the notch factor (from Dowling). 

 

𝐾𝑓 =
𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑢𝑡 𝑡𝑜 𝑥 = 𝑑

𝑆
=

𝜎𝑒

𝑆
 

• The stress controlling 
initiation of fatigue 
damage IS NOT the 
highest stress at the 
notch surface (x=0), 
but rather the 
somewhat lower value 
that is average out to a 
distance x=d. 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

 LC 1 

LC 2 
LC 3 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

Nodes at the surface 

Internal nodes 

Gauss points 

Z’ 

X’ 

Y’ 
𝜎𝑥𝑥′ 𝜎𝑥𝑦′

𝜎𝑥𝑦′ 𝜎𝑦𝑦′
 

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

 

Z 

X 

Y 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

Z’ 

s 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

𝜎′ 𝐿𝐶1 =
𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶1

 

𝜎′ 𝐿𝐶2 =
𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶2

 

𝜎′ 𝐿𝐶3 =
𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶3

 

𝜎′(𝑡) 𝑡𝑜𝑡 =
𝜎′

𝑥𝑥(𝑡) 𝜎′𝑥𝑦(𝑡)

𝜎′𝑥𝑦(𝑡) 𝜎′𝑦𝑦(𝑡)
= 𝐶(𝑡)𝐿𝐶1 𝜎′ 𝐿𝐶1 + 𝐶(𝑡)𝐿𝐶2 𝜎′ 𝐿𝐶2 + 𝐶(𝑡)𝐿𝐶3 𝜎′ 𝐿𝐶3 = 

 

= 𝐶(𝑡)𝐿𝐶1

𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶1

+ 𝐶(𝑡)𝐿𝐶2

𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶2

+ 𝐶(𝑡)𝐿𝐶3

𝜎′𝑥𝑥 𝜎′𝑥𝑦

𝜎′𝑥𝑦 𝜎′𝑦𝑦 𝐿𝐶3

=  𝐶(𝑡)𝐿𝐶𝑖 𝜎′ 𝐿𝐶𝑖
𝑖

 

𝐶(𝑡)𝐿𝐶1 

𝐶(𝑡)𝐿𝐶2 

𝐶(𝑡)𝐿𝐶3 

𝑡 

𝑡 

𝑡 



Napoli 2017 Fatigue and Damage Tolerance  
 

• Models and methods described in Part 1 relate to UNIAXIAL 
conditions 

– One stress or one strain (with its own time history),  

– The fatigue parameters is built with one stress or one strain 

 

• Dealing with Multiaxial Stress Tensors, the Fatigue analysis 
problem gets significantly more complex. 

• Depending on the nature of the applied loads, the Multiaxial 
problems are divided into two categories: 

– Multiaxial – Proportional Loadings 

– Multiaxial – Non-Proportional Loadings 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 
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• Multiaxial – Proportional Loadings. 

– This situation typically occurs when the structure is 
subjected to a single load, whose magnitude changes over 
time, or when the structure is subjected to a set of loads 
which change all in phase over time 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 
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• Multiaxial Proportional Loading Conditions (software LIFING) 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

Instant ti 

328.8 MPa 
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• Multiaxial Proportional Loading Conditions (software LIFING) 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

Instant ti+1 

102.3 MPa 
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• Multiaxial Proportional Loading Conditions (software LIFING) 
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Instant ti+2 

301.2 MPa 
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• Multiaxial – Non-Proportional Loadings. 

– This situation is the general one, when the structure is 
subjected to multiple loads which vary in time not in phase. 
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• Multiaxial – Non-Proportional Loadings. 

– If stress components are plotted in a chart, the points do not lay 
on a not straight line. 

– Similarly, stress principal directions and bi-axiality ratios change 
over time. 
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• Multiaxial Non-Proportional Loading Conditions (software LIFING) 
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Instant ti 

328.8 MPa 
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• Multiaxial Non-Proportional Loading Conditions (software LIFING) 
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Instant tk 

313.4 MPa 
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MULTIAXIAL FEM ASSISTED FATIGUE ANALYSIS 

• Biaxiality Ratio is usually defined as the ratio between the 
Minimum and Maximum (in magnitude) Principal Stress. 

 

𝜎 =
𝜎1 0
0 𝜎2

                     𝜆 =
𝜎2

𝜎1
 

 

• By definition, the bi-axiality ratio 𝜆 spans between -1 and 1. 

• In case of uniaxial stress tensor, the bi-axiality 𝜆 ratio is zero. 

• What could be the implication of 𝜆 ≠ 0 in a calculation which 
neglects the presence of a second stress? (*) 

 

(*) This is the case, for example, when the analysis is carried out just looking at 
the Maximum Principal stress time history 
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• What would happen if we run a fatigue analysis at three different  
notches loaded with the same time history of loads (Multiaxial 
Proportional Loading), where the following three reference stress 
tensors are given? 

 

 

100 
100 

−100 
−100 

200 

200 

200 0
0 0

 200 0
0 100

 200 0
0 −100

 

Case 1 Case 2 Case 3 

200 

200 

200 

200 
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• The fatigue analysis performed on the basis of the Max Principal 
Stress would deliver the same result for all the three cases. 
However if we calculate the Von Mises stresses we have: 

 

• Case 1. VM = 𝜎1
2 + 𝜎2

2 − 𝜎1 ∙ 𝜎2 = 200MPa 

 

• Case 2. VM = 𝜎1
2 + 𝜎2

2 − 𝜎1 ∙ 𝜎2 = 173.2MPa 

 

• Case 3. VM = 𝜎1
2 + 𝜎2

2 − 𝜎1 ∙ 𝜎2 = 264.6MPa 
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• Yield surfaces 

 

 

 

 

 

 

 

 

 

• Can the three cases be equally damaging? 

 

𝜎1 

𝜎2 

Case 1: 200 MPa  

Case 2: 173.2 MPa  

Case 3: 264.6 MPa  

VM = Fty 
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• The fatigue (crack initiation) analysis performed on the basis of 
the Max Principal Stress, inherits two fundamental errors: 

 

– (1) Assume the problem is Multiaxial Proportional Loading.  

• The impact of biaxiality ratio is ignored, meaning that: 

–CONSERVATIVE ERROR if l>0 

–UNCONSERVATIVE ERROR if l<0 

– (2) Assume the problem is Multiaxial Non-Proportional 
Loading. 

• The Maximum Principal Plane ROTATES over the time (and 
biaxiality ratio changes as well), meaning that: 

–At each instant in the time history the structure wants to crack at 
different planes, whereas the Maximum Principal is an ‘invariant’ 
(i.e. plane insensitive) 
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• The Non-Proportionality significantly increases the problem 
complexity, because of the following issues: 

–Solving Cyclic Plasticity (in case of LCF) with multiple stress 
components is way more complex (many methods are available), 
therefore the calculation of elastic-plastic stress-strains out of 
elastic FEM calculated stress-strains is a very complex issue. 

(Simple approaches are available in case of Proportional Loadings) 

 

–If we were able to calculate elastic-plastic stress-strains,  
defining cycles within a Stress Tensor time history where 
components change over the time not in phase is complex 
(Wang-Brown method is proposed in literature, however some 
analysis methods do not require special sequence counting). 

 

–What is the best fatigue parameter, combination of stress 
components, if multiple stress components vary over the time? 
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• Cyclic Plasticity Calculation 

– Yield function 

 
𝑌 = 𝜎1

2 + 𝜎2
2 − 𝜎1 ∙ 𝜎2 − 𝑆𝑦2 = 0 

 

– Plastic Flow (“normality”) Rule  

 

𝑑𝜀 𝑝𝑙 =
1

𝐶
𝑑𝜎 𝑇 ∙ 𝑛 ∙ 𝑛 

 

– Hardening Rule 

• Many models have been developed, for example the 
Mróz-Garud Multi-Surface (hardening) Model 
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24. April 2017 

C = Plastic modulus 
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• Instant 0  (𝜎 = 0) 
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24. April 2017 

𝜎1 

𝜎2 

Stress Status 

𝜎 

𝜀 

C0 =s1/e1 =E 

C1=(s2-s1)/(e2-e1) 

C2=(s3-s2)/(e3-e2) 

C3=(s4-s3)/(e4-e3) 

1 

2 

3 

4 
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• Instant 0 

• Instant 1 
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𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2  (yielding)  
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24. April 2017 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 (yielding surf. translation) 
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24. April 2017 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 

• Instant 4 (hardening surf. translation) 
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24. April 2017 

𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 

• Instant 4 

• Instant 5 
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𝜎1 

𝜎2 



Napoli 2017 Fatigue and Damage Tolerance  
 

• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 

• Instant 4 

• Instant 5 

• Instant 6 (yielding surf. translation) 
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𝜎1 

𝜎2 
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• Instant 0 

• Instant 1 

• Instant 2 

• Instant 3 

• Instant 4 

• Instant 5 

• Instant 6 

• Instant 7 

• … 

 

COMPUTATIONALLY DEMANDING 

(INCREMENTAL APPROACH) 
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𝜎1 

𝜎2 
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• Critical plane methods are very popular. They are based on 
analysis performed at many ‘candidate’ critical planes. 

 

• Amongst all ‘candidate’ planes, the critical one is the plane which 
maximizes the defined fatigue parameter, e.g., in LCF: 

– Smith-Watson-Topper: 𝜎𝑁,𝑚𝑎𝑥 ∙
∆𝜀𝑁

2
 

 

– Brown-Miller: 
∆𝛾𝑚𝑎𝑥

2
+ 𝑆∆𝜀𝑁 

 

– Fatemi-Socie: 
∆𝛾𝑚𝑎𝑥

2
1 + 𝑆

𝜎𝑁,𝑚𝑎𝑥

𝑆𝑦
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X’ 

Y’ 

Z’ 

• Working on the surface of a mechanical component, two 
rotations define the critical plane. 
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• Example with the software Lifing 
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Instant ti 

328.8 MPa 
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• Example with the software Lifing 
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Instant tk 

313.4 MPa 
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• Example with the software Lifing 
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Fatigue Critical Location 

Life = 10
3.023

 cycles 
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• Example with the software Lifing 
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• Why the need of removing conservativism? ‘Fatigue analyses have 
always been done with conventional conservative approaches’... 

 

 

 

 

 

 

 

 

• ...true, but the industry is going in the direction of ‘super-optimized’ 
structures. Converntional techniques are INSUFFICIENT! State-of-the-
art analysis methods and tools are required 
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DAMAGE TOLERANCE ANALYSIS 

 

• The Damage Tolerance design criteria assume that cracks are 
always present in the structure (see F-111 accidents). 
 

• The analyst shall demonstrate that crack growth is stable and… 
 

• …that the structure has sufficient Residual Strength to survive 
missions up to the next maintenance. 
 

• The calculation is also aimed to define inspection intervals. 
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Load 

Time History 

 

 

CG Life 

Residual 
Strength 

Inspection 
Intervals 

 

DAMAGE TOLERANCE ANALYSIS 

CRACK GROWTH 

MODEL 

(da/dN) 

 

Cycle Counting 

 

Fracture Mechanics 

Stress Intensity 
Factor 

 

Integration 
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• Crack Tip Stress 

  𝜎𝑚𝑎𝑥 = 𝐾𝑡 ∙ 𝑆 

  𝐾𝑡 = 1 + 2
𝑎

𝜌
 

 

 

 

• When r tends to 0 (the ellipse 
becomes a crack), the stress at 
the crack tip goes to infinity, 
which is a non-sense. 

• In reality plasticity occurs; stress 
is finite. 

• The linear elastic theories are no 
longer applicable at crack tips; 
the calculated stress is no longer 
a relevant quantity. 
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• Something else must be used to characterize the stress status at 
a crack tip: the Stress Intensity Factors. 
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LINEAR ELASTIC FRACTURE MECHANICS 

𝐾𝐼 = 𝑆 ∙ 𝜋𝑎 ∙ 𝑌 

• Y is a geometrical factor, a is the 
crack size, S the remote stress. 

𝑀𝑃𝑎 𝑚𝑚 

𝑘𝑠𝑖 𝑖𝑛𝑐ℎ 

• From Wastegaard and Irwin: 
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• Stress Intensity Factors (SIFs) are associated to three crack 
opening modes: 

24. April 2017 93 

LINEAR ELASTIC FRACTURE MECHANICS 

Mode I 
Opening mode 

KI 

Mode II 
In-plane shear mode 

KII 

Mode III 
Out-of-plane shear mode 

KIII 
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LINEAR ELASTIC FRACTURE MECHANICS 

Mode I 
Opening mode 

KI 

Mode II 
In-plane shear mode 

KII 

Mode III 
Out-of-plane shear mode 

KIII 
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• Stress Intensity Factors must be calculated. 

 

• In general the Opening Mode KI is the most relevant (KII and 
KIII are more involved in the crack kinking/twisting). 

 

• There are multiple ways to obtain KI: 

– From Handbooks 

– From FEM (or BEM) calculations 

– From X-FEM calculations 

– With Weight Functions 
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• SIFs from Handbooks (TADA, Rooke-Cartright, …) 
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• SIFs from FEM 

– From FEM there are many ways that can be used to 
calculate KI. 

1. From Energy Release rate 

2. With Displacement Correlation 

3. With Virtual Crack Extension Method 

4. With Crack Closure Integral Method 

5. With Modified Crack Closure Integral Method 

6. With J-Integral Method 

7. With M-Interaction Integral Method 

8. … 

– (1), (2) and (6) are briefly shown. 
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• SIFs from FEM - Energy Release rate 

– The Stress Intensity Factors KI (and KII, KIII) in the three 
modes of fracture are uniquely related to the Energy 
Release Rate G. 

– G = −
dF
dA    being F the Total Strain Energy, A the crack 

opening surface. 

– 3D Plane Strain:  𝐺 = 𝐺𝐼 + 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 =
1−𝑣2

𝐸
𝐾𝐼

2 + 𝐾𝐼𝐼
2 +

1+𝑣

𝐸
𝐾𝐼𝐼𝐼

2 

– 2D Plane Strain:  𝐺 = 𝐺𝐼 + 𝐺𝐼𝐼 =
1−𝑣2

𝐸
𝐾𝐼

2 + 𝐾𝐼𝐼
2  

– Plane Stress:       𝐺 = 𝐺𝐼 + 𝐺𝐼𝐼 =
1

𝐸
𝐾𝐼

2 + 𝐾𝐼𝐼
2  
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• SIFs from FEM - Energy Release rate 

– From FEM the Total Strain Energy F is calculated at each 
crack propagation step.  
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Step i 

Calculation of Fi  

Step i+1 

Calculation of Fi+1  

dA 

G = −
dF

dA
=

F𝑖 − F𝑖+1

dA
=

F𝑖 − F𝑖+1

t ∙ d𝑎
=       

1 − 𝑣2

𝐸
𝐾𝐼

2 + 𝐾𝐼𝐼
2     𝑜𝑟      

1

𝐸
𝐾𝐼

2 + 𝐾𝐼𝐼
2  

Plane strain Plane stress 
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• SIFs from FEM – Displacement Correlation 

– The idea is simple: correlate computed (FEM/BEM) local 
displacements with their theoretical values, with SIF as 
scaling parameter. 
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ra-b 
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• SIFs from FEM 

– The stress field at the crack tip is singular. 

– The singularity makes the problem not compatible with 
standard FEM-BEM polynomial-based formulations. 

– If one wants to reproduce these fields with FEM-BEM, many 
small elements are needed, especially in the K-dominant 
region. 

– However, in the limit as one approaches the crack front, we 
can never reproduce the singular nature with polynomial 
based elements. 

– This makes calculating SIF’s accurately using local field 
information difficult and inefficient with such elements, 
however… 
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• SIFs from FEM 

– …Quarter point elements reproduces the correct leading 
displacements and strain terms. 
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• SIFs from FEM 

– …Quarter point elements reproduces the correct leading 
displacements and strain terms. 
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• SIFs from FEM 
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• SIFs from FEM – Displacement Correlation 

– If ¼-point elements are used: 
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• SIFs from FEM – J-Integral (Rice, 1968) 

 

 

 

 

– Where 𝑊 =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 is the strain energy density, T is the 

surface traction vector, n is the unit outward normal to the 
contour, u is the displacement vector. 

– The J-Integral measures the energy flux into the crack-tip 
region. 

– Rice demonstrated that; (1) under small scale yielding 
conditions, the J-Integral is equal to the Energy 
Release Rate, G…. 
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• SIFs from FEM – J-Integral (Rice, 1968) 

– …(2) for a material which is characterized by linear 
or nonlinear elastic behavior, J is path-independent. 

– The contour J-Integral can be recast as an equivalent area 
(volume in 3D) integral (invoking divergence theorem), 
which is more accurate and stable in a finite element 
context. 
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STRESS INTENSITY FACTORS CALCULATION METHODS 

Where: 

• d is the Kroneker delta. 

• N is the element shape function.  

• q is a weighting function defined over the domain of integration (=1 at 
the crack tip, =0 on the boundary of the integration domain, =0.75 at 
the ¼ points). 
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• SIFs from FEM – J-Integral (Rice, 1968) 

 

 

 

 

 

 

 

𝐽 =   𝑑𝐽𝑖,𝑗

4

𝑗=1

𝑁𝑒𝑙𝑚𝑠

𝑖=1

 

where i is the elements counter, j is the Gauss points counter 
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𝑑𝐽1 = 𝑑𝐽1,1 + 𝑑𝐽1,2 +𝑑𝐽1,3 +𝑑𝐽1,4 
𝑑𝐽1 

𝑑𝐽2 𝑑𝐽3 

𝑑𝐽4 

𝑑𝐽5 

𝑑𝐽6 𝑑𝐽7 

𝑑𝐽8 
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• SIFs from FEM – J-Integral (Rice, 1968) 
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𝑑𝐽𝑖,𝑗 = 𝜎𝑖,𝑗

𝜕𝑢𝑖

𝜕𝑥1
− 𝑊𝛿1𝑗

𝜕𝑞

𝜕𝑥𝑗
𝑑𝐴𝑗 = 𝜎11

𝜕𝑢

𝜕𝑥
+ 𝜎12

𝜕𝑣

𝜕𝑥
− 𝑊

𝜕𝑞

𝜕𝑥
+ 𝜎12

𝜕𝑢

𝜕𝑥
+ 𝜎22

𝜕𝑣

𝜕𝑥

𝜕𝑞

𝜕𝑦
𝑑𝐴𝑗 

 

𝑊 =
1

2
𝜎11𝜎11 + 𝜎22𝜎22 + 𝜎12𝜎12  

𝜕𝑞

𝜕𝑥
=  

𝜕𝑁𝑘,1

𝜕𝑥
𝑞𝑘

6

𝑘=1

                                           
𝜕𝑞

𝜕𝑦
=  

𝜕𝑁𝑘,2

𝜕𝑦
𝑞𝑘

6

𝑘=1

                                             𝑑𝐴𝑗 = det [𝐽] ∙ 𝑤𝑗 

 
𝜕𝑁𝑘

𝜕𝑥
=

𝐽22

det [𝐽]

𝜕𝑁𝑘,1

𝜕𝑠
−

𝐽21

det 𝐽

𝜕𝑁𝑘,1

𝜕𝑡
                   

𝜕𝑁𝑘

𝜕𝑥
= −

𝐽12

det 𝐽

𝜕𝑁𝑘,2

𝜕𝑠
+

𝐽11

det [𝐽]

𝜕𝑁𝑘,2

𝜕𝑡
 

 

Being 𝐽 =

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠
𝜕𝑥

𝜕𝑡

𝜕𝑦

𝜕𝑡

=
 

𝜕𝑁𝑘,1

𝜕𝑠
𝑥𝑘

6
𝑘=1  

𝜕𝑁𝑘,2

𝜕𝑠
𝑦𝑘

6
𝑘=1

 
𝜕𝑁𝑘,1

𝜕𝑡
𝑥𝑘

6
𝑘=1  

𝜕𝑁𝑘,2

𝜕𝑡
𝑦𝑘

6
𝑘=1

 the element Jacobian matrix  

 
𝑁 𝑠, 𝑡  = the element shape functions matrix; s and t the node k coordinates in the element 
mapped space. 
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• SIFs from FEM – J-Integral (Rice, 1968) 

– 2D Plane Strain condition:  J = 𝐺 =
1−𝑣2

𝐸
𝐾𝐼

2 + 𝐾𝐼𝐼
2  

– 2D Plane Stress condition:  J = 𝐺 =
1

𝐸
𝐾𝐼

2 + 𝐾𝐼𝐼
2  

 

24. April 2017 110 

STRESS INTENSITY FACTORS CALCULATION METHODS 

• Separate the modes by 
decomposing the near crack-
tip displacement fields into 
one field that is symmetric 
with respect to the crack and 
another field that is anti-
symmetric with respect to the 
crack. 
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• SIFs from FEM – J-Integral (Rice, 1968) 
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• Example with the software Lifing 
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STRESS INTENSITY FACTORS CALCULATION METHODS 
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• Example with the software Lifing 
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STRESS INTENSITY FACTORS CALCULATION METHODS 
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• Example with the software Lifing 
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STRESS INTENSITY FACTORS CALCULATION METHODS 
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• Example with the software Franc3D 
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STRESS INTENSITY FACTORS CALCULATION METHODS 
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• Running this kind of analysis IS NOT CHEAP but the cost 
besnefit can be HUGE 

• Example: 

– Assume we have a fleet of 500 Aircraft 

– Assume that a structural detail (analysed with conventional 
Analysis Methods) has to be inspected once every year after 10 
years of Service 

– Assume that the fleet has to be in Service for other 10 years 

– Assume each inspection (NDI Inspection) has a cost of 500 Euro 

 

– The Inspection Programme costs 500x500x10 = 2’500’000 Euro 

– ...plus the cost of the grounded fleet!!!! 
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STRESS INTENSITY FACTORS CALCULATION METHODS 
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– Assume that an analysis like the one in the previous slide takes 
300 hr 

– Assume an hourly rate 100 Euro 

– Analysis cost: 300x100 =      30’000 Euro 

– Assume that with this analysis we are able to relax the Inspection 
Interval to 1 Inspection every 2 years (halved interval) 

 

– The new Inspection Programme now costs 1’250’000 Euro 

– Savings: 1’250’000 + 30’000 – 2’500’000 = 

                                  (-) 1’220’000 Euro 
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STRESS INTENSITY FACTORS CALCULATION METHODS 
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CRACK GROWTH MODELS 

• Crack Growth Life analysis is the time (or number of cycles) to 
propagate a flaw of an assumed or measured initial size to a 
critical dimension. 

 

• In most metallic materials, catastrophic failure is preceded by a 
substantial amount of stable crack propagation under cyclic 
loading conditions. 

 

• The rate of growth of a fatigue crack subjected to a constant 
amplitude stress reversals is expressed in terms of the crack 
length increment per cycle, da/dN. 
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CRACK GROWTH MODELS 

• For a cyclic variation of imposed stress field, the linear elastic 
fracture mechanics characterization of the rate of fatigue crack 
growth is based on the SIF range 

      
∆𝐾𝐼 = 𝐾𝐼,𝑚𝑎𝑥 − 𝐾𝐼,𝑚𝑖𝑛 

 

• Being 𝐾𝐼,𝑚𝑎𝑥 and 𝐾𝐼,𝑚𝑖𝑛 are the maximum and minimum values, 

respectively, of SIFs during a fatigue stress cycle. 

 

• Crack Growth Models are in the form   da/dN = f(DKI, R) 
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CRACK GROWTH MODELS 
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CRACK GROWTH MODELS 

• Paris Model 

 
 

 

 

 

– There is a linear 
relationship between 
da/dN and DK in a log-log 
space. 

– C and n are material 
constant, dependant on 
environmental conditions 
and load ratio R 
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CRACK GROWTH MODELS 

• Walker Model 

 
 

 

 

 

– For simplicity reasons the 
complete fatigue crack 
growth rate is usually 
approximated by three 
piece curve with the two 
vertical limiting 
asymptotes mentioned 
earlier.  

122 

𝐶 =
𝐶0

1 − 𝑅 𝑛(1−𝛾)
 

= ∆𝐾𝑡ℎ 1 − 𝑅 1−𝛾𝑡ℎ 
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CRACK GROWTH MODELS 

• Fracture toughness KC is a property which describes the ability 
of a structure containing a crack to resist fracture. 

• KC is a structural property as well, not only a material property: 
the dimensions (e.g. thickness) influence KC.  

• KC is derived from the Plane Strain Fracture Toughness KIC, 
where a thickness correction is applied. 

123 

Ductile Fracture  

Plastic deformation takes 
place before fracture 

Brittle Fracture 

No apparent plastic 
deformation takes place 
before fracture 
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CRACK GROWTH AND RESIDUAL STRENGTH ANALYSIS 

• The analysis starts with 
a given initial crack a0 
The ‘damage 
cumulation’ concept 
looses the meaning 
described in the Fatigue 
chapter.  

• the crack SIFs change 
at each cycle because 
the crack is growing. 
This is a significant 
difference wrt to the 
damage cumulation 
process employed in 
fatigue analyses. 

• The same stress cycle occurring at different instants contributes differently 
because the SIF is changed (as the crack has grown). For this reason the time 
history is integrated multiple times. 

Curve obtained by integrating 
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CRACK GROWTH AND RESIDUAL STRENGTH ANALYSIS 

• Variable amplitude sequence of loads induce ‘load interaction’ effects which are 
beneficial (crack retardation). 

• Local high tension 
stresses generate 
compressive residual 
stresses which tend to 
close the crack (crack 
closure).  

• the crack keeps 
propagating when 
another tension load 
cycle ‘breaks through’ 
the compressive region. 

• Available retardation 
models (Willemborg, 
Wheeler, Fastran, …) 
must be calibrated by 
tests. 

𝑍𝑂𝐿 𝑎𝑂𝐿 

∆𝑎 

𝑎𝑎𝑝 

𝑍𝑎𝑝 

Overload 
Plastic Zone 

Plastic Zone 
associated to the 

current applied load 
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INSPECTION INTERVALS 

• Once the CG curve is calculated (life to fracture from an initial 
crack size), this is the principal tool for the definition of Safety 
by Inspection Regime. 

• Two kind of inspections are defined: 

– Threshold inspection: the first inspection to be performed 
in a given component or area 

– Recurrent inspections: the subsequent ones 

• For the definition of these, dedicated Scatter Factors are used 

– Threshold inspection: SF = 2 

– Recurrent inspections: SF = 3 (and a detectable crack 
size, depending on the inspection technique, must be 
defined) 

126 
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INSPECTION INTERVALS 

127 

a0=0.05” 
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INSPECTION INTERVALS 

128 
Nfract/2 Nfract/2 
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INSPECTION INTERVALS 
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adet 
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INSPECTION INTERVALS 

130 
Nfract-Ndet 

adet 

Ndet 

(Nfract-Ndet)/3 
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THANK YOU 
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CONTACT: N40.ANALYSIS@GMAIL.COM 
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