

I-PTFC

P2012 Traveller

Seminari interdisciplinari di cultura aeronautica – IV Ciclo Le Attività di progettazione ed esecuzione delle prove in volo dei velivoli

History

- > Founded in 1948 in the South of Italy Capua, Naples by Pascale Brothers.
- Became a leading producer of General Aviation at this time as Partenavia.
- Producer of parts for other important Manufacturers:
 - Alenia (Horizontal tail for the ATR aircraft family)
 - Aer Macchi (Vertical tail of M346 Military Trainer)
 - Boeing (Fuselage panel for B717 Commercial Aircraft)
 - Augusta (Fuselage Structural Parts)

Copyright © Tecnam. All rights reserved.

What We Do Today

- One of the most innovative company in General Aviation in the last decade;
- In the last years TECNAM have delivered more than 200 aircraft per year, becoming one of the most important GA's OEM according to GAMA;
- TECNAM have 250 employees and our production capability is to produce 1 ½ single engine two seater aircraft per day, 1 twin engine per week and 1 single engine four seater every two weeks.
- More than 33's models along AUL LSA CS/VLA CS/23//FAR23's categories.

Copyright © Tecnam. All rights reserved.

TECNAM is spread all over the world:

TECNAM Headquarters in Capua- Italy

Casoria Facility in Naples - Italy

Sebring Facility in Florida - US

Shenyang Facility in China by LUSY

MORE THAN 65 DEALERS MORE THAN 125 SERVICE CENTER WORLDWIDE

Copyright © Tecnam. All rights reserved.

TECNAM Research & Development

NASA has selected the **Tecnam P2006T** twin as the airframe on which it will evaluate the potential of **LEAPtech** (Leading Edge Asynchronous Technology), with the aim of developing safer, more energy efficient, lower operating cost and greener general aviation aircraft.

CIRA

📂 Centro Italiano Ricerche Aerospaziali

CIRA has selected the **Tecnam P92** to be developed as an **UNMANNED aircraft.**

TECNAM is the only company who has a complete aircraft certified by EASA with hand controls in order to allow disable pilots to get their license in GA. This certification was supported by a recognized entity from UK called **Aerobility**.

Tecnam is actively evaluating the potential of developing and producing a two-seater, single turbofan engine powered aircraft **TECNAM PJET Concept.**

Today TECNAM is the World Leader in Light and General Aviation Aircraft Manufacturing:

TECNAM Airplanes:

Recognized as the First Choice More than 33 models along AUL - LSA -Training many Flight for CS/VLA - CS/23//FAR23's categories; Organizations (FTO); All our fleet is capable of using Mogas All family of aircraft have the (Automobile Fuel) and Avgas. widest range of choice for any Flight School, Private Owner, Surveillance and Regional TECNAM is the only company offering the most Airlines. affordable fleet in terms of acquisition price and 11% operational cost in the sector. 20% Market Share Fligh Training Organization Special Mission 69% Private

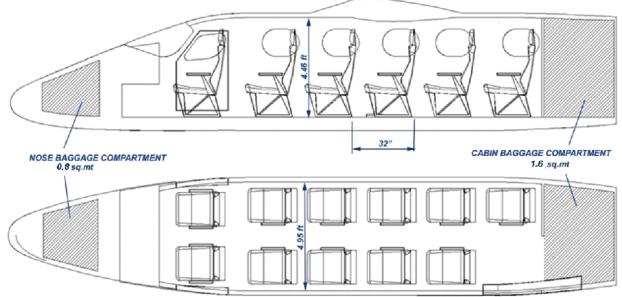
Copyright © Tecnam. All rights reserved.

Tecnam P2012 Traveller Program

- Operators have been demanding a next generation aircraft that can deliver not only profits but reliability, efficiency and of course, passenger comfort.
- One of the first new FAR23/CS23 aircraft to address this marketplace in more than many years.
- The P2012 Traveller builds on Tecnam's commitment to continue to develop outstanding, stylish, innovative and affordable aircraft.

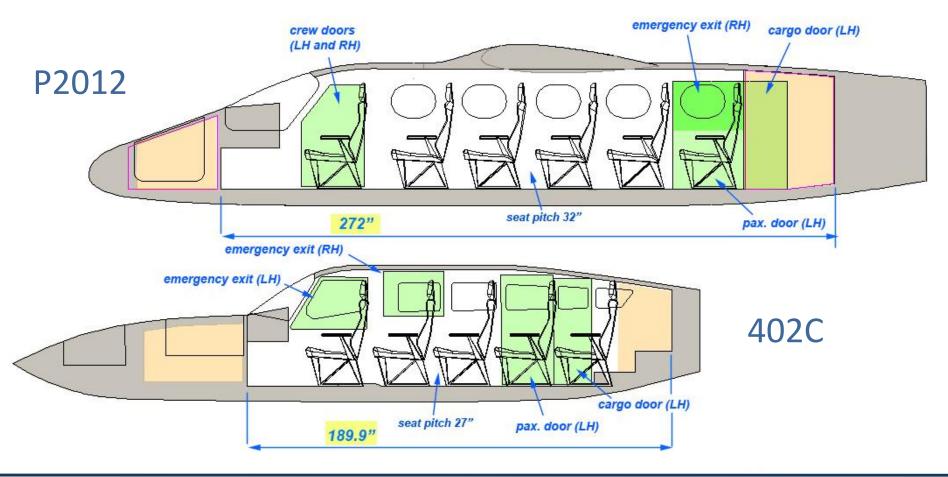
Copyright © Tecnam. All rights reserved.

Benefits of high wing configuration - comparison

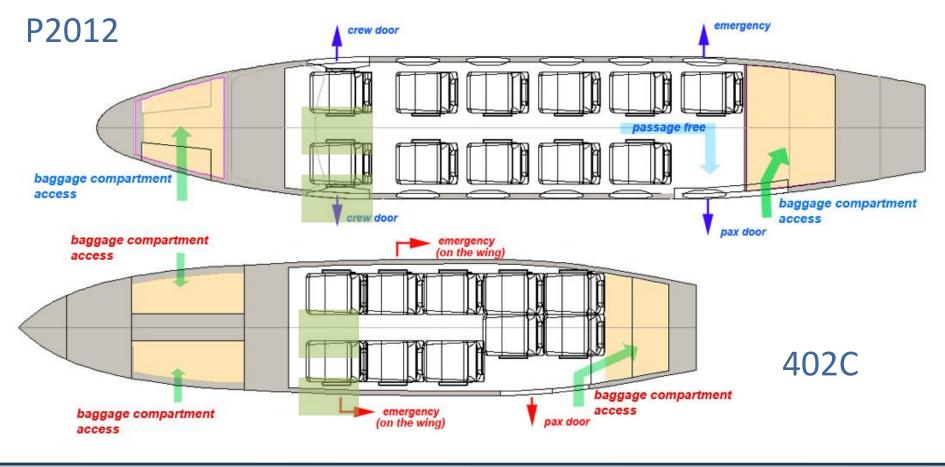


Seating Arrangement

standard configuration

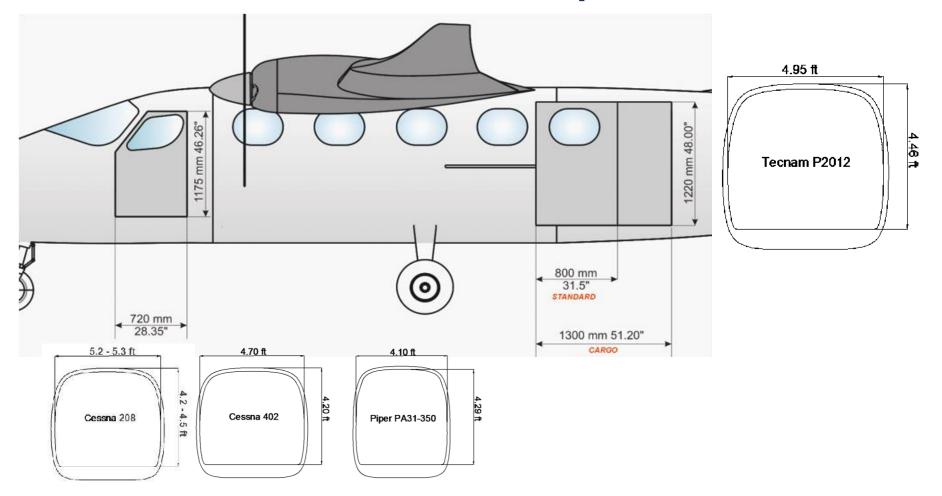


One or two pilots – 9 passengers Pitch between seats 32.00" Baggage compartment volume 88.3 ft³

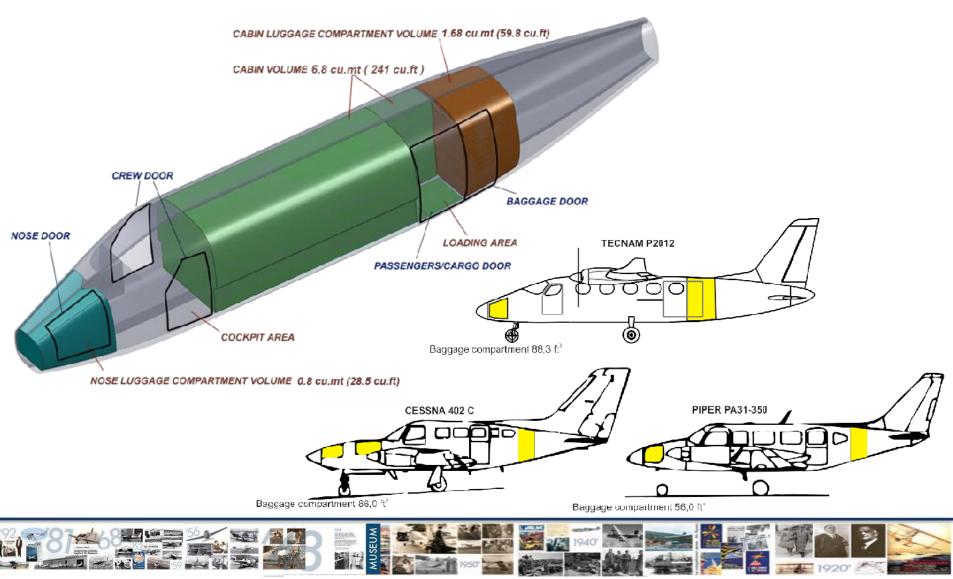

Seating Arrangement - 402C comparison



Seating Arrangement - 402C comparison



Copyright © Tecnam. All rights reserved.


Cabin section Comparison

Baggage Compartment Comparison

Baggage Loading Comparison

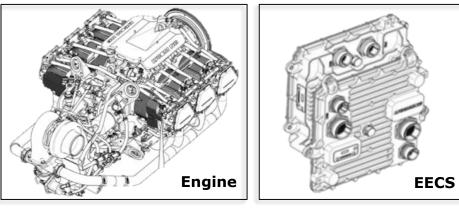
Weights

BASIC EMPTY WEIGHT	2250 kg (4956 lbs)
OPERATIONAL E.TY WEIGHT (SINGLE PILOT+LUGGAGE)	2350 kg (5176 lbs)
мтоw	3600 kg (7930 lbs)
MAX LANDING WEIGHT	3450 kg (7600 lbs)
RAMP WEIGHT	3620 kg (7974 lbs)
ZERO FUEL WEIGHT (9 passengers + single pilot + luggage)	3160 kg (6960 lbs)
WING LOADING	142 kg/m² (29 lbs/ft²)
POWER LOADING	4.8 kg/hp (10.6 lbs/hp)
FUEL CAPACITY	800 lt (212 USGal)

Performances

CRUISE SPEED (TAS. 75%)	172 kt 6.000ft	174 kt 8.000ft	177 kt 10.000ft			
CRUISE SPEED (TAS. 65%)	162 kt 165 kt 167 kt 6.000ft 8.000ft 10.000ft					
STALL SPEED (T.O. CONFIGURATION)		65 <i>kt</i>				
STALL SPEED (FULL FLAP)		60 kt				
VMC		74 kt				
RATE OF CLIMB	1600 ft/min					
RATE OF CLIMB (SINGLE ENGINE)	400 ft/min					
TAKE OFF DISTANCE (50ft obs)		1840 ft				
LANDING DISTANCE (50ft obs)		1660 ft				
TAKE OFF RUN		1410 ft				
LANDING RUN	875 ft					
ACCELERATE-STOP DISTANCE	1870 ft					
RANGE ³	720 nm					
RANGE ⁴		445 nm				

³ (65%, max fuel, 6000 ft, 45' reserve, single pilot, 8 passengers)


 4 (65%, 6000 ft, 45' reserve, single pilot, 9 passengers)

LYCOMING data

Engine Lycoming TEO-540-C1A

Lycoming TEO-540-C1A Engine

is a direct-drive six-cylinder, horizontally opposed, turbocharged, air-cooled engine. It has electronic fuel injection, electronic ignition, down exhaust, and induction air coolers. As equipment, this engine has an automotive type starter, one 28V alternator (130A) and a propeller governor.

The EECS (Electronic Engine

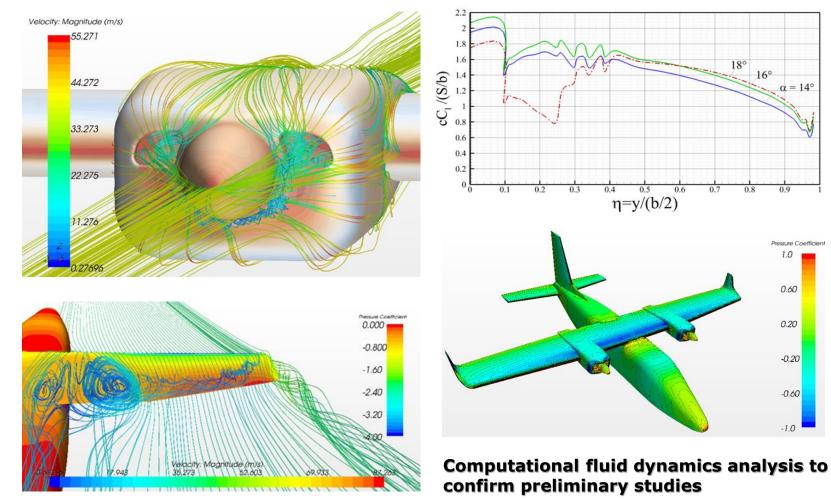
Control) is an electronic, microprocessor controlled system that continuously monitors and adjusts ignition timing, fuel injection timing, and fuel mixture based on operating conditions. The EECS eliminates the need for magnetos and manual fuel/air mixture. The EECS connects engine hardware with electronic controls to replace mechanical control systems and enables single lever engine control.

Copyright © Tecnam. All rights reserved.

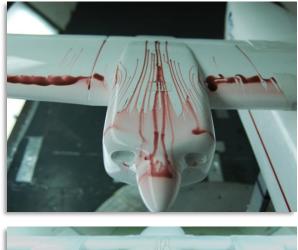
TIO-540 vs. TEO-540 Fuel Consumption vs. Power

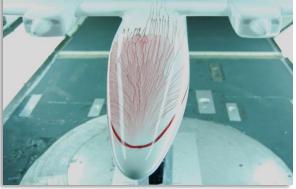
Power Setting	Power	TEO-540 -C1A	TIO-540 –J2B	Delta
60%	210HP@2200rpm	14.5	14.6	-0.1 gph (0.7%)
75%	263HP@2400rpm	18.1	20.7	-2.6 gph (-12.6%)
100%	350HP@2575rpm	32.6	40.2	-7.6 gph (-18.9%)

Cockpit layout



	Standard and Option	al av	vior	nic e
System code	Description	Qty	Stnd.	Opt.
	Standard avionics equipment			
GDU 1050 System	Display unit (PFD1+PFD2)	2	•	
GDU 1250 System	Display unit (PFD1/PFD2/MFD)	1	•	
GIA 64W System	COM/NAV/GPS Interface unit	2	•	
GRS 79 System	AHRS	2	•	
GDC 72 System	ADC	2	•	
GEA 71B System	EIS units	2	•	
GMU 44 System	Magnetometer	2	•	
GAP 52 System	Heated Pitot Probe + AoA	1	•	
GAP 52	Heated Pitot Probe	1	•	
GTP 59 System	OAT Probe	2	 • • 	
GMA350c	Full digital Audio Panel	1/		
GTX 345R System	MODE-S/ADSB-OUT/ADSB-IN-FIS-B XPDR	1	•	
GMC 710 System	A/P Mode Controller	1 -	•	
	- includes 3 axis control			
	- includes yaw damper			1
	- servos acting as trim actuators			43
	Optional Avionic units			
GCU 477 System	Flight Management System keyboard	1		
GDL 69A System	Satellite Data-link	1		• 1
GSR 56 System	Iridium data-link	1_		•
GTS System	TAS/TCAS unit	1		•
GWX 70	WX Radar	1		•
Flight Stream	Streaming of PDF/MFD data with iPad	1		•

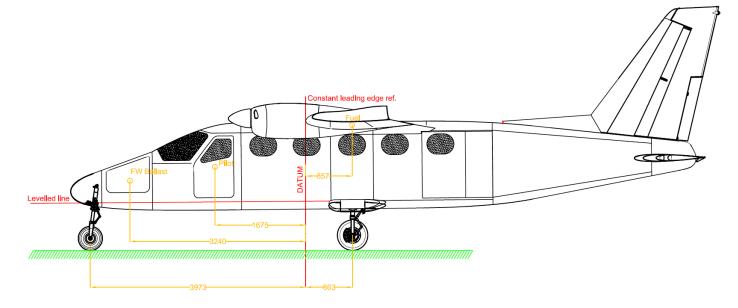

Aerodynamic Analysis



Aerodynamic Analysis

Wind Tunnel testing confirm espected data

Flight Test


- Manage aircraft configuration(s)
- Define applicable requirements and test pass/fail criteria
- Development Tests
- Define test procedure and loading conditions
- Define Flight Test Points (FTP) and Flight Test Order (FTO)
- Risk Assessment and Risk Management
- Data Reduction and/or Pilot Statements

Copyright © Tecnam. All rights reserved.

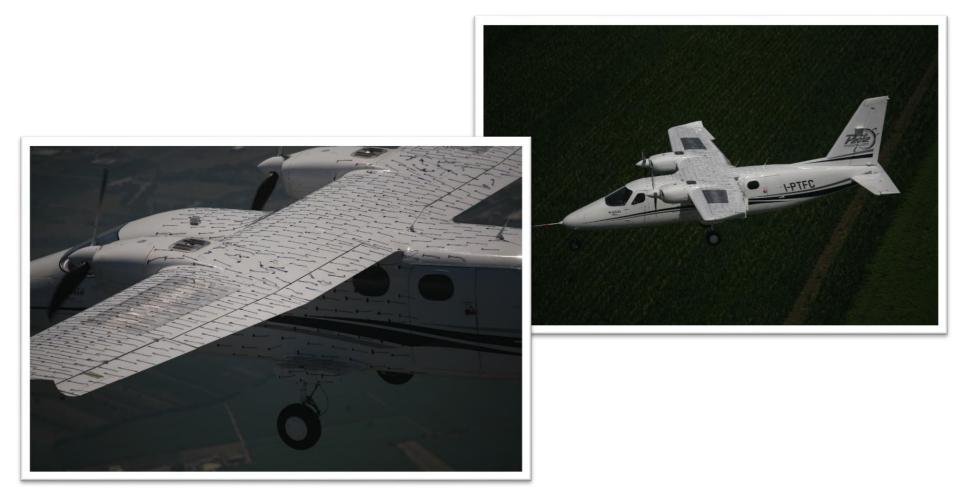
Aircraft Configuration

- Aircraft Weighing
- Pilot, Crew, Ballast, Fuel, etc.
- List of experimental change installed
- Configuration notes
- Flight Test Instrumentation (FTI)

Copyright © Tecnam. All rights reserved.

Applicable Requirements (EASA CS-23)

Subpart	Requirements
Flight	23.45, 23.49, 23.51, 23.53, 23.63, 23. 65, 23.66, 23. 67, 23.69, 23.73, 23.75, 23.77, 23.141, 23. 143, 23.145, 23.147, 23.149, 23.153, 23.155, 23.157, 23.161, 23.171, 23.173, 23.175, 23.177, 23.181, 23.201, 23.203, 23.207, 23.231, 23.233, 23.235, 23.251
Design and Construction	23.629, 23.671, 23.677, 23.697, 23.701, 23.735, 23.745, 23.773, 23.831
Powerplant	23.901, 23.903, 23.905, 23.909, 23.939, 23.943, 23.951, 23.959, 23.961, 23.975, 23.1011, 23.1017, 23.1023, 23.1041, 23.1043, 23.1047, 23.1091, 23.1093, 23.1141, 23.1143
Equipment	23.1301, 23.1311, 23.1321, 23.1322, 23.1323, 23.1325, 23.1327, 23.1331, 23.1337, 23.1351, 23.1381, 23.1383, 23.1401, 23.1431, 23.1431


Test Pass/Fail Criteria(s)

Req.	Title	Test Pass/Fail Criteria(s)	МоС
23.65	Climbs: all engine operating	The steady gradient of climb at sea level must be at least 4.0%	Data Reduction
23.75	Landing Distance	No excessive vertical acceleration No tendency to bounce No tendency to nose-over No tendency to ground loop No porpoise	Data Reduction Pilot Statement
23.629	Flutter	The A/C is free from flutter The A/C is free from control reversal The A/C is free from divergence	Data Reduction
23.1301	Function and Installation	Each item of installed equipment must function properly	Pilot Statement

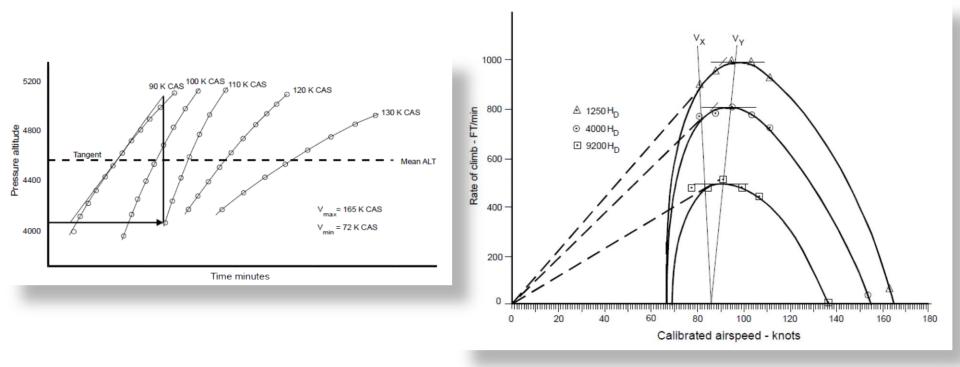
Development Flight Test - Aerodynamic

Copyright © Tecnam. All rights reserved.

Development Flight Test - Ice Protection

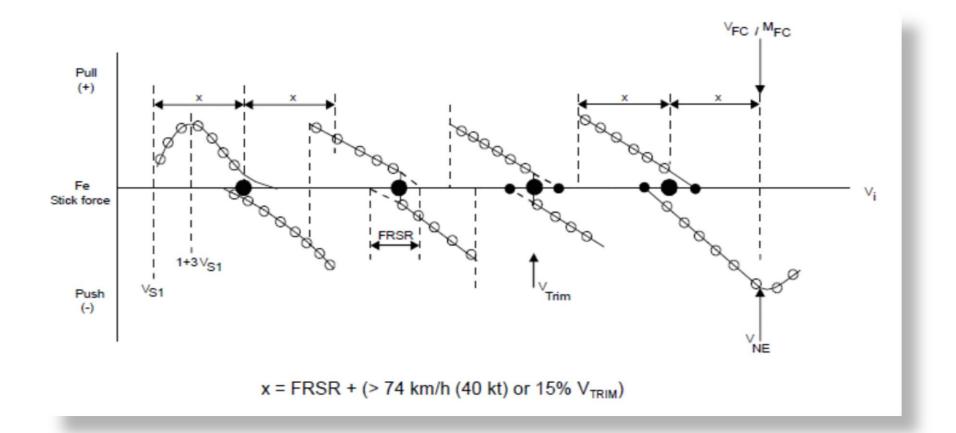
SoC Flight Tests

- Flight Performance (Stalling Speed, Take-Off, Landing, Rate of Climb, etc.)
- Stability (Static Longitudinal Stability, Static Directional and Lateral Stability, Dynamic Stability)
- ➢ Flutter
- Powerplant (Controls, Cooling, Fuel System, Oil System, etc.)
- > Equipment
- Human Factor


Flight Performance – Rate of Climb

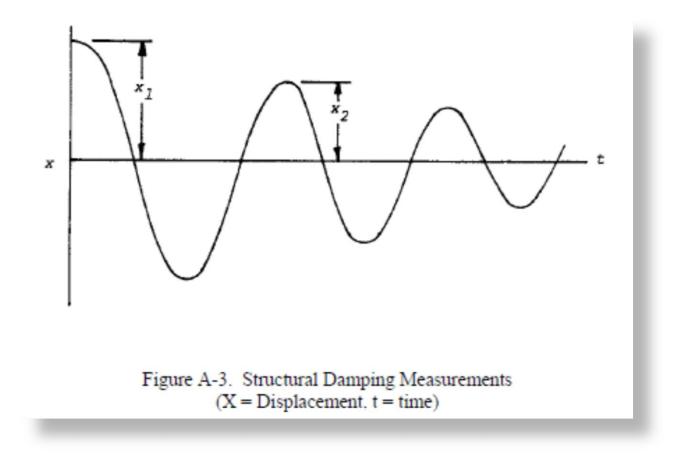
Title	All Engine Operating En-route Climb							
Procedure	const	A series of climbs, known as sawtooth climbs, will be conducted at several constant indicated airspeed and several altitude using a constant power setting and a prescribed configuration.						
Requirements	23.45	23.45, 23.63, 23.69, 23.141, 23.161, 23.1301						
Flight Test Points	#	W	C.G.	Flap	Pwr	Alt.		
	1	1 MTOW FWD UP MCP LOW						
	2	2 MTOW FWD UP MCP MID						
	3	MTOW	FWD	UP	МСР	HIGH		

Flight Performance – Rate of Climb


Stability – Static Longitudinal Stability

Title	Static Longitudinal Stability - Cruise							
Procedure	Trim the airplane in the prescribed configuration and for the condition required by the regulation. Apply a pull force and stabilize at a lower speed. Continue this process in appropriate steps (5 to 10kts) and record displacements and effort at each step. At prescribed stabilized point the pull force should be very gradually relaxed to allow the airplane to slowly return toward trim speed and zero stick force. Set again at the initial trim speed and apply a push force and stabilize at a higher speed. Continue this process in appropriate increments (5 to 10kts) and record displacements and effort at each increment. Relax stick in the same manner as previously described.							
Requirements	23.14	23.141, 23.171, 23.175						
Flight Test Points	#	W	C.G.	Flap	Pwr	Alt.		
	1	1 LIGHT AFT UP PLF LOW						
	2	LIGHT	AFT	UP	PLF	HIGH		

Stability – Static Longitudinal Stability


Flutter – Flutter Test

Title	Flutte	Flutter						
Procedure	contro	At several trim speed points (up to VD), each axis must be pulsed, with bands off controls, prior to the next impulse or speed point, in order to verify the A/C is free from flutter, control reversal, and divergence.						
Requirements	23.62	9						
Flight Test Points	#	W	C.G.	Flap	Pwr	Alt.		
	1	LIGHT	FWD	UP	A.R.	LOW		
	2	LIGHT	FWD	UP	A.R.	HIGH		

Flutter – Flutter Test

Equipment – Air Data System

Title	Air Da	Air Data System					
Procedure	The c	Check for proper functioning of all related equipment. The compliance with this requirement will be shown with a pilot judgement during the flight test campaign.					
Requirements	23.13	23.1301					
Flight Test Points	#	# W C.G. Flap Pwr Alt.					
	0	ALL	ALL	ALL	ALL	ALL	

Human Factor – Human Factor for IFR

Title	Human Factor for IFR								
Procedure		Simulate IFR legs, VOR and RNAV RNP, and NON PRECISION (VOR) and ILS approaches.							
Requirements	CRI B-	-52							
Flight Test Points	#	W	C.G.	Flap	Pwr	Alt.			
	1	ANY	ANY	ТО	A.R.	A.E.			
	2	ANY	ANY	UP	MTOP	ANY			
	3	ANY	ANY	UP	MCP	ANY			
	4	ANY	ANY	UP	PLF	ANY			
	5	ANY	ANY	UP	DESCENT	ANY			
	6	ANY	ANY	LN	APP	ANY			
	7	ANY	ANY	LN	A.R.	A.E.			
	8	ANY	ANY	ANY	A.R.	A.E.			

Thanks for your time

Happy Landings...

