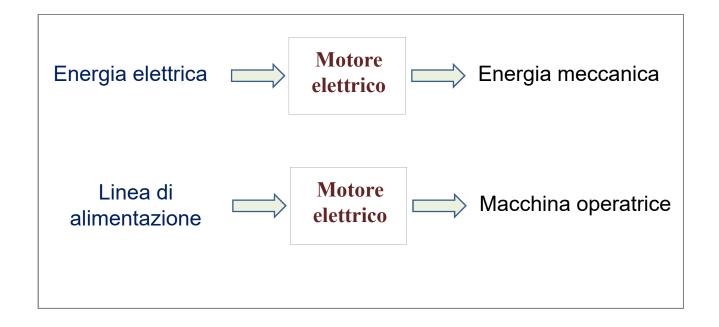
Seminari Interdisciplinari di Cultura Aeronautica

I MOTORI AERONAUTICI DI NUOVA GENERAZIONE

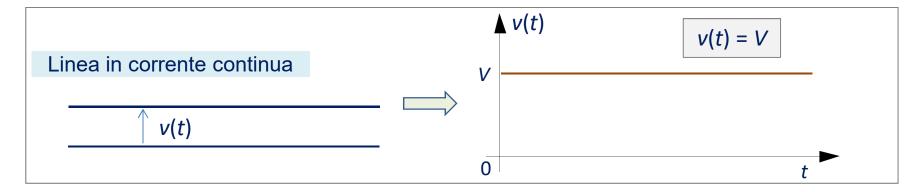
Propulsione elettrica ed ibrida

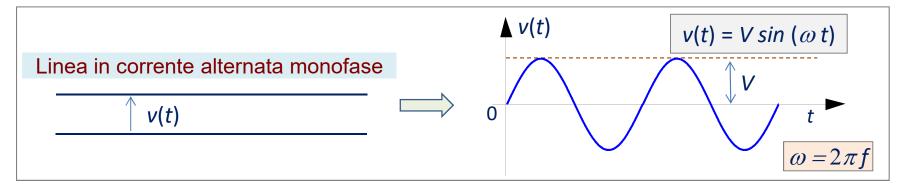

Andrea DEL PIZZO

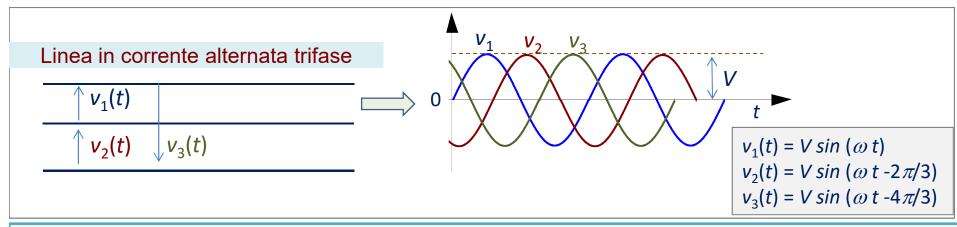
Prof. di Convertitori, Macchine ed Azionamenti elettrici
Università di Napoli Federico II

OUTLINE

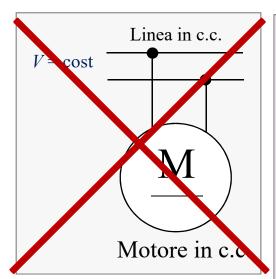
- Azionamenti elettrici (motori, convertitori, azionamenti)
- Sistemi di generazione e di accumulo dell'energia elettrica (motogeneratori rotanti; pile a combustile; batterie)
- Propulsione elettrica ed ibrida di velivoli (esempi di realizzazioni commerciali e sperimentali)

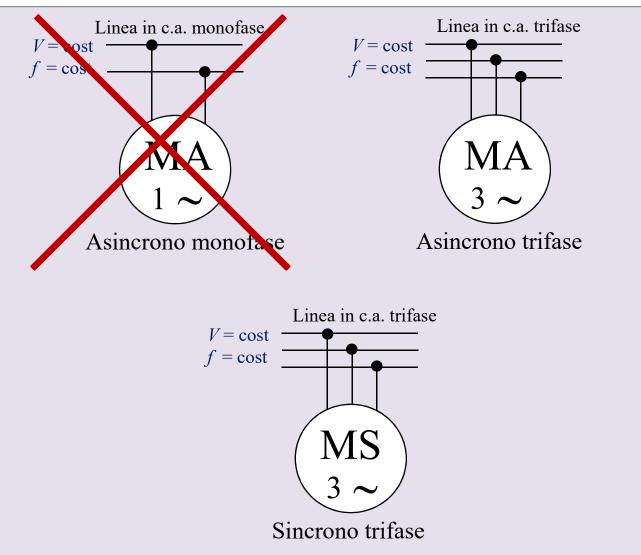

MOTORI ELETTRICI




Motore elettrico: convertitore di energia elettrica in meccanica.

Tecnologia: elettromeccanica (materiali ferromagnetici, conduttori elettrici, isolanti).

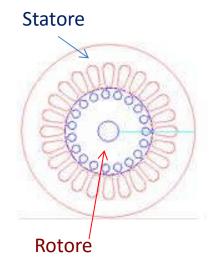

LINEE ELETTRICHE DI ALIMENTAZIONE

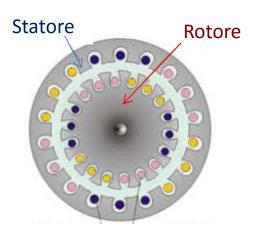


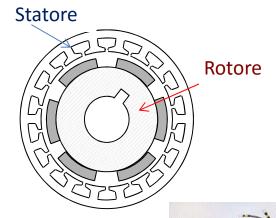
MOTORI ELETTRICI

MOTORI ROTANTI

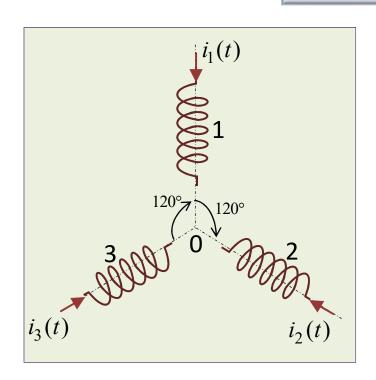
Non consideriamo i motori lineari

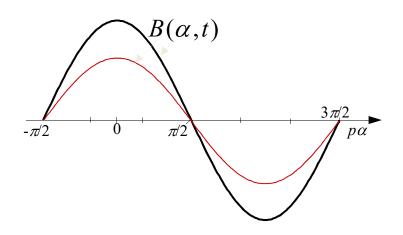

Parte fissa: STATORE

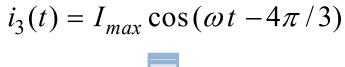

Parte mobile : **ROTORE**


Lo **STATORE** ha una struttura cilindrica ed è in genere esterno

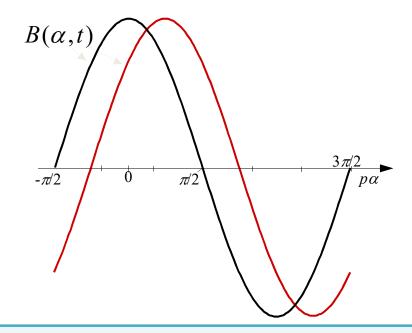
Il **ROTORE** ha una struttura cilindrica ed è in genere interno


Esistono motori con il rotore esterno (in certi casi è utile per la connessione ad una ruota, ad un'elica, ..)

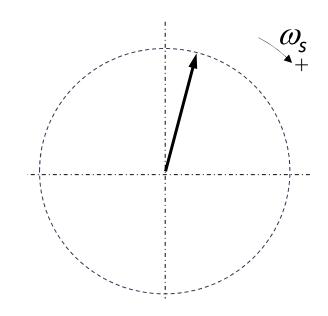




6



se $i_1(t) = I_{max} \cos(\omega t)$ $i_2(t) = I_{max} \cos(\omega t - 2\pi/3)$



CAMPO MAGNETICO ROTANTE

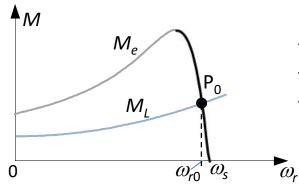
CAMPO MAGNETICO ROTANTE

Velocità di rotazione del campo rotante

$$\omega_s = \frac{\omega}{p} = \frac{2\pi f}{p}$$
 con $f =$ frequenza $p =$ coppie di poli

$$\omega_s = \frac{60 f}{p}$$
 in numero di giri al minuto

MOTORE ASINCRONO

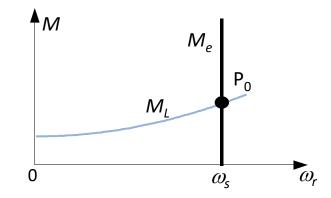

Velocità di rotazione $\omega_r < \omega_s$

MOTORE SINCRONO

Velocità di rotazione $\omega_r = \omega_s$

CARATTERISTICHE COPPIA-VELOCITA' DA RETE RIGIDA

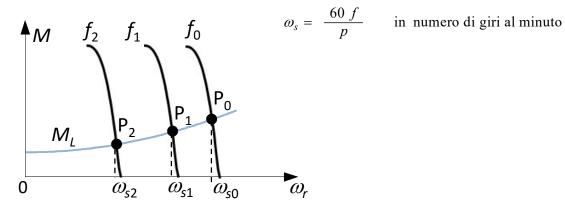
MOTORE ASINCRONO

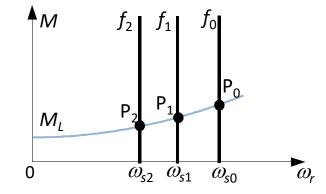

$$\omega_s = \frac{60 f}{p}$$
 in numero di giri al minuto

$$f = 50 \ Hz$$
 $\Rightarrow \omega_s = 3.000; 1.500; 1.000; giri/1'$

$$f = 60 \text{ Hz}$$
 $\Rightarrow \omega_s = 3.600; 1.800; 1.200; \dots giri/1'$

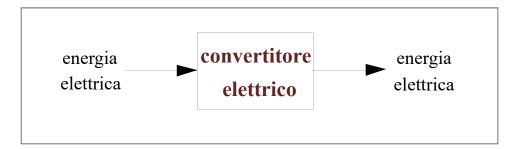
$$f = 400 \ Hz \implies \omega_s = 24.000; 12.000; 8.000; ... \ giri/1'$$

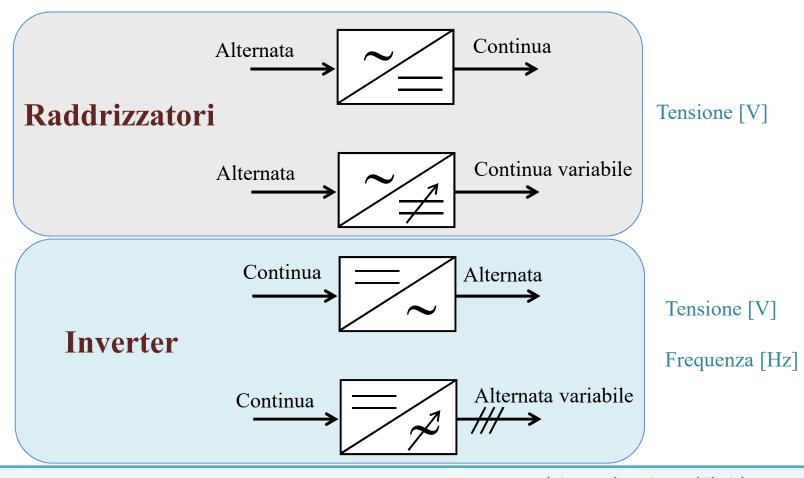

MOTORE SINCRONO


MOTORI TROPPI "RIGIDI", NON ADATTI ALLA TRAZIONE DI VEICOLI

CARATTERISTICHE COPPIA-VELOCITA' A FREQUENZA VARIABILE

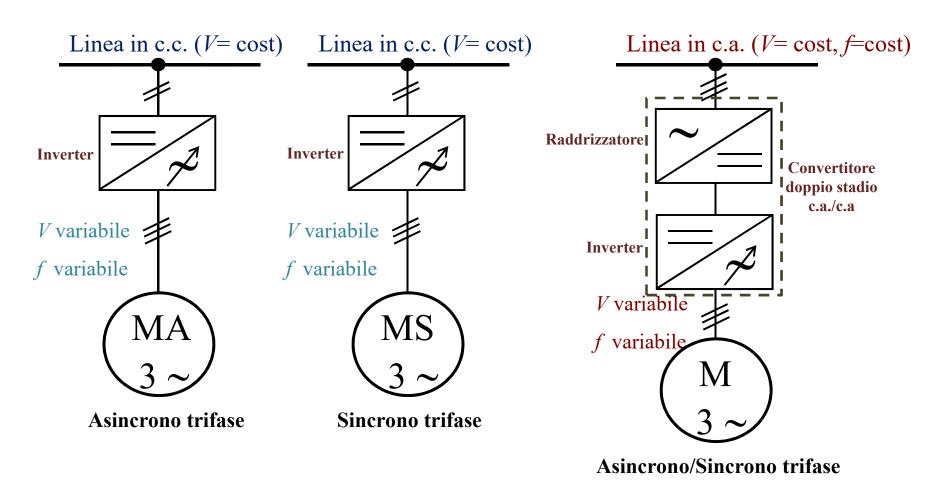
MOTORE ASINCRONO




MOTORE SINCRONO

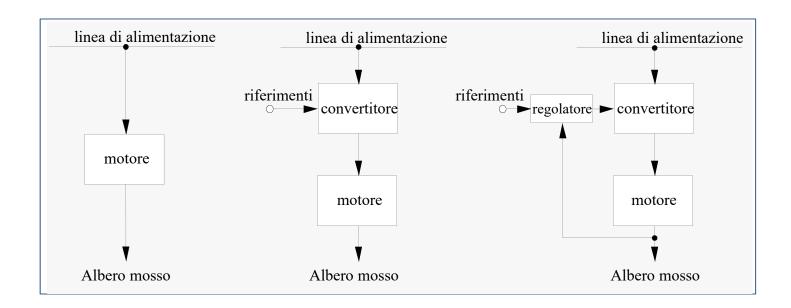
MOTORI "FLESSIBILI", ADATTI ALLA TRAZIONE DI VEICOLI

CONVERTITORI STATICI DI ENERGIA ELETTRICA


CONVERTITORI STATICI DI ENERGIA ELETTRICA

I convertitori statici sono composti da dispositivi di commutazione a semiconduttori (diodi, tiristori, transistori di vario genere).

Introdotti a fine anni '50 si sono sviluppati e resi convenientemente utilizzabili a fine anni '80; negli anni '90 hanno aumentato decisamente la loro affidabilità e oggi sono largamente utilizzati in numerosissime applicazioni.


CONVERTITORI STATICI DI ENERGIA ELETTRICA

Grazie ai convertitori, se vogliamo usare un motore in alternata trifase regolabile in velocità, possiamo pensare a queste soluzioni:

Dal MOTORE all'AZIONAMENTO

Azionamenti non regolati, controllati in catena aperta, controllati in catena chiusa

Torniamo ai MOTORI

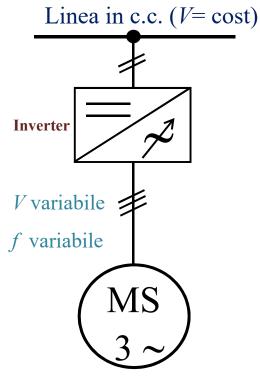
MOTORI IN ALTERNATA TRIFASE

ASINCRONO	SINCRONO
Lo statore è uguale per i due tipi di motore	
Nel rotore è presente un avvolgimento in corto circuito non alimentato. Le correnti sono indotte. In inglese il nome è <i>Induction Motor</i>	Nel rotore è presente un avvolgimento di eccitazione che va alimentato a parte rispetto allo statore. Cè bisogno di "pazzole + contatto strisciante" per addurre corrente al rotore
E' molto robusto	Ha una densità di po (nza maggiore (kW/kg)
E' intrinsecamente stabile	Ha qualche problema di stabilità
Può essere controllato in velocità in catena aperta	Può essere controllato in velocità solo in catena chiusa

MOTORI IN ALTERNATA TRIFASE

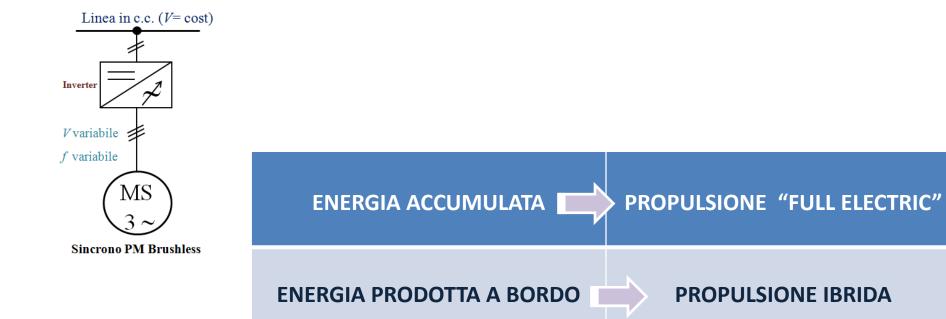
ASINCRONO	SINCRONO A MAGNETI PERMANENTI
Lo statore è uguale per i due tipi di motore	
Nel rotore è presente un avvolgimento in corto circuito non alimentato. Le correnti sono indotte. In inglese il nome è <i>Induction Motor</i>	Nel rotore sono presenti dei magneti di eccitazione. Il motore non ha bisogno di "spazzole" e prende il nome di Brushless PM (motore senza spazzole a magneti permanenti)
E' molto robusto	E' un po' più delicato, perché i magneti permanenti non sono leghe, ma materiali sinterizzati, sensibili a sforzi e alla temperatura.
E' intrinsecamente stabile	Con il controllo non ha problemi di stabilità
Può essere controllato in velocità in catena aperta	Può essere controllato in velocità solo in catena chiusa, ma è frequente il controllo speed-sensorless, cioè senza i costosi sensori di velocità.
	Ha una densità di potenza (kW/kg) molto maggiore
	Può sviluppare coppie elevate anche a basse velocità; in molti casi si possono evitare le trasmissioni meccaniche (direct-drive, gearless)

MOTORI IN ALTERNATA TRIFASE

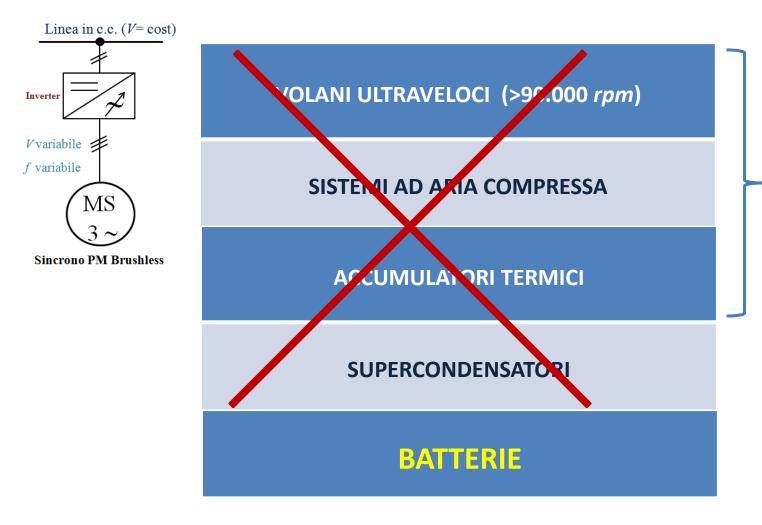

Per la PROPULSIONE DI VELIVOLI la scelta cade sui:

MOTORI SINCRONI A MAGNETI PERMANENTI

PM BRUSHLESS MOTORS

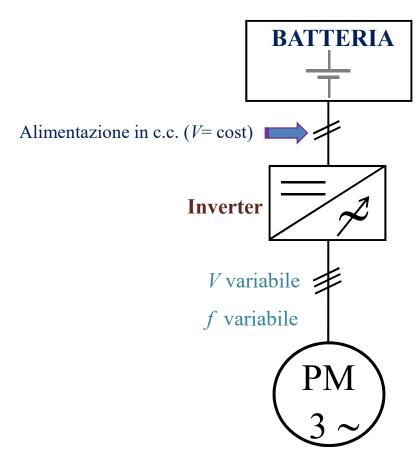

2 ÷ 3 kW/kg nelle esecuzioni ordinarie

Anche 5 kW/kg con raffreddamenti spinti



Sincrono PM Brushless

SORGENTI DI ENERGIA ELETTRICA



ACCUMULATORI DI ENERGIA

E' necessaria la trasformazione in energia elettrica

BATTERIE

Sintesi di caratteristiche delle batterie

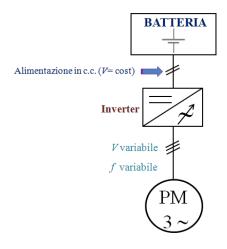
TIPOLOGIA

Tensione di una cella (in Volt)

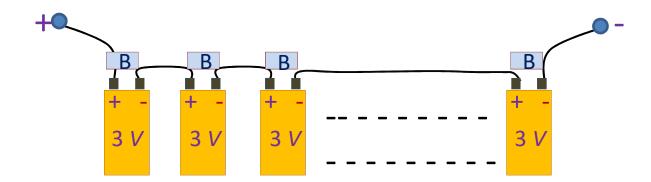
N.ro di celle in serie

Potenza nominale e Potenza Max (in *kW*)

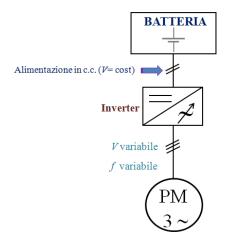
Energia immagazzinata (kWh)

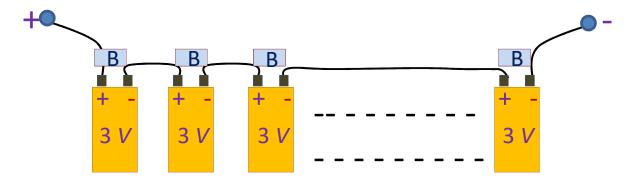

Cicli di carica/scarica nella vita

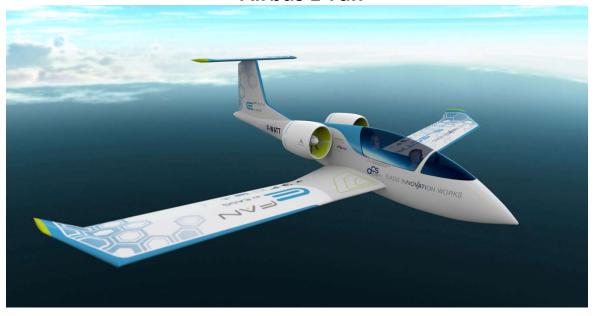
Densità di energia (kWh/kg) o (kWh/dm³)


Densità di potenza (kW/kg) o (kW/dm^3)

Tempo di ricarica (h)


BATTERIE


- Numerosi tipi di batterie disponibili sul mercato;
- Le **Batterie al Litio** sono oggi le più convenienti per densità di potenza e per n. cicli carica/scarica;
- ☐ Tipo "Litio IONI" (Litio Ferro Fosfato LiFePO₄,) oppure "Litio POLIMERI"
- La cella elementare ha una tensione di circa 3 V;
- Per avere una tensione da 300 V a 600 V (plausibile per l'alimentazione del motore) sono necessarie 100÷200 celle in serie;
- Necessità di "bilanciamento" delle tensioni delle celle attraverso circuiti elettronici


BATTERIE

Litio Ferro Fosfato LiFePO ₄	
Densità di potenza (kW/kg)	2
Densità di energia (kWh/kg)	0.16÷0.18
Cicli di vita (scarica 1C)	> 2000
Vita in servizio (uso continuo)	5-6 anni
Efficienza di carica	95%

Airbus E-Fan

Numero di motori elettrici	2
Potenza motori elettrici	30 kW
Pacco batterie	Ioni di Litio, 29 kWh
Peso totale pacco batterie	167 kg
Velocità massima velivolo	220 km/h
Velocità di crociera	160 km/h
Autonomia	60 minuti

Numero di motori elettrici	4
Potenza motori elettrici	7,5 kW
Pacco batterie	Ioni di Litio, 4 pacchi da 21 kWh
Peso totale pacco batterie	450 kg
Velocità di crociera	70 km/h
Autonomia	36 ore

Pipistrel Taurus Electro G2

Numero di motori elettrici	1
Potenza motori elettrici	30 kW
Pacco batterie	Ioni di Litio, 4.75 – 7.10 kWh
Peso totale pacco batterie	42-59 kg
Velocità di crociera	100 km/h
Autonomia	N.D.

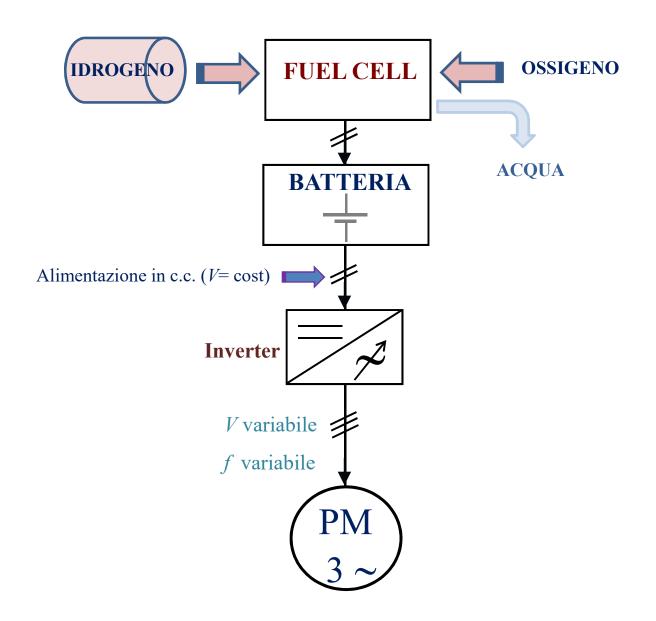
Rui Xiang RX1E

Numero di motori elettrici	N.D.
Potenza motori elettrici	N.D.
Pacco batterie	N.D.
Peso totale pacco batterie	N.D.
Velocità di crociera	159 km/h
Autonomia	45-60 minuti

Eurosport Aircraft

Numero di motori elettrici	2
Potenza motori elettrici	30 kW
Pacco batterie	Ioni di Litio, 36 kWh
Peso totale pacco batterie	N.D.
Velocità di crociera	220 km/h
Autonomia	N.D.

Yuneec International E430


Numero di motori elettrici	2
Potenza motori elettrici	40 kW
Pacco batterie	Litio polimeri , N.D. kWh
Peso totale pacco batterie	13 kg
Velocità di crociera	90 km/h
Autonomia	N.D.

Long-ESA

Numero di motori elettrici	1
Potenza motori elettrici	193 kW
Pacco batterie	N.D.
Peso totale pacco batterie	N.D.
Velocità massima	354 km/h
Autonomia	N.D.
Particolarità	Detiene il record idi velocità di un velivolo elettrico



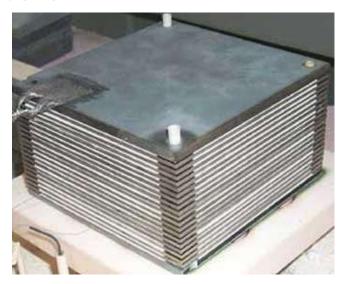
Proton exchange membrane fuel cells

Temperatura di funzionamento	-40° C / 52 °C
Temperatura di funzionamento cella	N.D.
Combustibile	Idrogeno e Ossigeno
Densità di potenza	220 W/kg
Densità di energia	N.D.
Rendimento	35 %-60%

Alkaline fuel cells

Sistema di Fuel Cell alcaline utilizzato sullo SPACE Shuttle

> Sistema di Fuel Cell alcaline utilizzato per le missioni Apollo


Temperatura di funzionamento	N.D.
Temperatura di funzionamento cella	40°C -200 °C
Combustibile	Idrogeno e Ossigeno
Densità di potenza	200-700 W/kg
Densità di energia	N.D.
Rendimento	60%

Direct methanol fuel cells

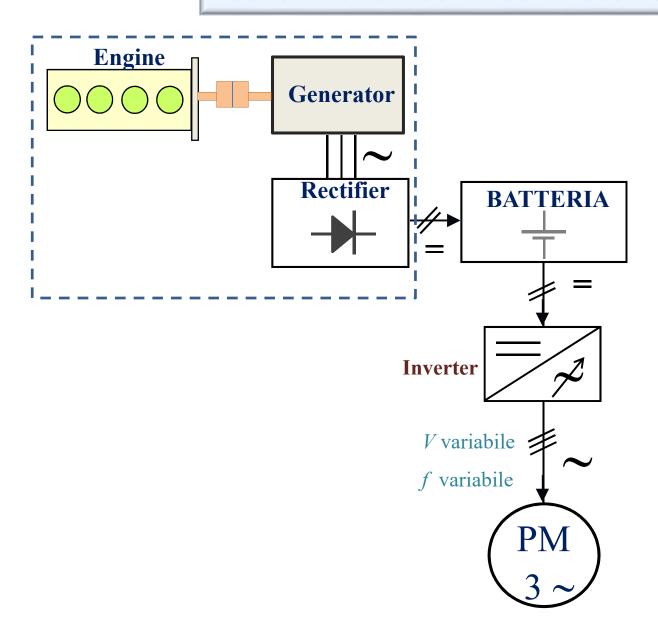
Temperatura di funzionamento	-97 °C – 64 °C (Metanolo liquido)
Temperatura di funzionamento cella	N.D.
Combustibile	Metanolo
Densità di potenza	N.D.
Densità di energia	> 300 Wh/kg
Rendimento	>30 %

Solid oxide fuel cells

Temperatura di funzionamento	N.D.
Temperatura di funzionamento cella	500°C-1000 °C
Combustibile	Elettroliti ceramici a base di Ittrio, zirconio, stronzio, cobalto, etc
Densità di potenza	N.D.
Densità di energia	>500 Wh/kg
Rendimento	60%

SkySPARK

Velivolo utilizzato	Pioneer 300
Numero di motori elettrici	1
Potenza motori elettrici	65 kW
Pacco batterie	Litio polimeri, 7,5 kWh
Peso totale pacco batterie	N.D.
Fuel Cells	60 kW
Velocità di massima	240 km/h
Autonomia	35 min


Airbus E-Genius

Numero di motori elettrici	1
Potenza motori elettrici	58 kW
Pacco batterie	Litio Polimeri, N.D. kWh
Peso totale pacco batterie	N.D.
Sistema di generazione a bordo	Fuel Cell
Velocità di crociera	161 km/h
Autonomia (km)	400 km

Generazione a bordo con motori a combustione

Equator Hybrid Propulsion System P2

Velivolo utilizzato	P2
Numero di motori elettrici	1
Potenza motori elettrici	100 kW
Pacco batterie	Litio Polimeri, 2 kWh
Generatore a bordo	57-60 kW (solo per batterie)
Velocità di crociera (solo elettrico)	N.D.
Autonomia	4 minuti

DIAMOND DA-36 E-Star

Velivolo utilizzato	Diamond H36 Super Dimona
Numero di motori elettrici	1
Potenza motori elettrici	70 kW
Pacco batterie	N.D.
Generatore a bordo	30 kW (solo per batterie)
Velocità di crociera (solo elettrico)	N.D.
Autonomia	N.D.