Carene veloci con insufflaggio d’aria sul fondo
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La portanza idrodinamica | moduli dei vettori fanno

riferimento all’unita di

larghezza della lastra

La Rf & proporzionale a:
° V2
° WS
* densita del fluido

Non c’e¢ volume immerso quindi non c’e alcun
contributo idrostatico al sostentamento: si
determina il sostentamento idrodinamico
totale

edipendedaRe=(V, L, v)

NB: noi intendiamo agire su:

Uintegrale di questa aria vale N

densita del fluido

Sezione di divaricazione del flusso

Linea a velocita nulla = completa trasformazione
dell’energia cinetica in energia di pressione (a rigore, non €
esattamente cosi)




Insufflaggio sotto carena

MALS: Mitsubishi Air Lubrication System

Principio di funzionamento

Riduzione della resistenza viscosa (= di attrito): Uaria &

* 103volte menodensae

* 102 volte meno viscosa (viscosita dinamica)

Discontinuita di forma =
resistenze locali

Criticita

confinamento dell’aria

Proporzionale alle portate
ed alla pressione
idrostatica (profondita del
fondo)

energia necessaria all’insufflaggio

ventilazione dei propulsori

Riduzione dell’efficienza
propulsiva




Insufflaggio sotto carena

Carene a sostentamento
idrodinamico parziale o totale

Criticita:
* Nessuna cavita per il confinamento dell’aria (troppo
onerose) ma maggiori portate per la velocita di fuga e

per la maggiore dispersione

* Alte potenze necessarie per Uinsufflaggio per:
o Le maggiori portate
o la pressione idrodinamica e
o la posizione dei canali di accesso dell’aria

High speed planing hull
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ASV hull designed by Effect Ships International AS (SES Europe AS) and tested in SSPA’s facility. Read more about the BB GREEN project at A

www.bbgreen.info. Photo: Anders Mikaelsson, SSPA.




Sostentamento idrodinamico totale
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Ipersostentatori
* Principio di funzionamento degli interceptor: potenzialita e criticita

* Interceptor non convenzionali : potenzialita e criticita

-

Gli interceptor sono
ipersostentatori inventati da Dan
Gurney
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Interceptor:

efficacia in funzione di 3
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Aumento della resistenza di pressione (forme di prua ...)

Non € piu vero !
E’ significativamente maggiore




Interceptor non convenzionali

Zona asciutta

DIS (Double Interceptor System)

-_—___ ¥ —
—r
1

Vantaggi: B, 20Ty

 ampliailcampo divelocita contrastando Uipercorrezione dell’interceptor di poppa

* con sostentamento idrodinamico parziale riduce la percentuale di volume
immerso residuo

« Riduce la superficie bagnata sia per la maggiore sottrazione del volume immerso Vantaggio inesistente alle altissime velocita

. . . . d U iadi ibil il t t
sia per la zona asciutta a valle dell’interceptor di prua cove Tenergia disponibiie perit scontamento
idrodinamico & anche troppa

Criticita:

* possibile sovraimmersione della prua con conseguente innesco della Di p
divaricazione del flusso e incremento della resistenza di pressione N‘
* Possibile forte depressione a valle della separazione del flusso determinata

dall’interceptor di prua; cio avviene quando non si assicura il sufficiente accesso
di aria necessario per portare alla pressione atmosferica la zona asciutta.
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Interceptor non convenzionali

Aft interceptor

Direzione e verso dell’acqua

Flow separation

- - -

Impianto sperimentale

Aft interceptor ~ After spray edge Dry zone  Forward interceptor



Interceptor non convenzionali Sl (Split Interceptors)

Deflection ang]ef Closed vortex and Deflection angle fl; I
[ Stagnation zone " A

g

Small radius of |\

Great radius of curvature

curvature

Finalita e principio informatore:

* riduzione della bolla di ristagno con la conseguente aumento della curvatura delle linee di corrente; cio implica maggiori
accelerazioni e, quindi, una maggiore trasformazione di energia cinetica in energia di pressione
* sinotiche al crescere dellavelocita cresce la pressione e con essa la portata di acqua che attraversa h, cio comporta una

riduzione della pressione Criticita:
In sintesi siinnescano due effetti opposti: A causa delle piccole dimensioni della
franchigia fra interceptor e carena e
» Una riduzione della pressione provocata dalla fuga dell’acqua fondamentale che questa non venga ostruita
« Unincremento della pressione dovuta alle maggiori accelerazioni imposte al fluido dalfoulig o da altri ostacoli che possano
ridurre la velocita di efflusso dell’acqua.

Le due variazioni non dipendono linearmente dalla velocita e la somma dei due effetti rende in sostanza il sistema e
autoregolamentato:

* Alle basse velocita prevale 'incremento della pressione e si realizza la riduzione dell’assetto longitudinale desiderato
* Alle alte velocita prevale il maggior flusso riduce Ueffetto appruante ed il conseguente incremento di superficie bagnata e di

resistenza di pressione provocato dalla prua 1
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Figure 11: 20 Model; DIS performances
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Perché associare interceptor e insufflaggio ?

Per ridurre Uenergia necessaria all’insufflaggio (energia non utile)

Lo studio e stato eseguito associando all’insufflaggio il DIS per
fruire della depressione che si determina sotto flusso
all’interceptor di prua;

Si potrebbe anche associare sia il DIS che lo Split (e forse si fara)

High speed planing hull

14



Valutazione dei risultati (caso di studio)

UNIVERSILA i
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Procedura numerica

Mesh
refinements

Ventilazione forzata

Le simulazioni hanno riprodotto quanto sperimentato:

* modello libero (6 DoF)

* portate di aria uguali a quelle sperimentate

e scalamodello (L, =2.4 m)con 11 milioni di celle
* infittimento della mesh nelle zone critiche

* modello diturbolenza k—w

Mass Mlow rate
boundary condition

Ventilazione naturale
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Quando il DIS non e insufflato,

il passaggio dell’aria puo avvenire
sono lungo lo spigolo

le pressioni che si determinano
possono impedire il flusso

(a)

Volume Frnction of Waler
. . . ) .
Hall Sur e 00 o1l 0.22 0.33 0.44 056 05 078 oW .00

Pressure, C — ——
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Perché non si risolve come periredan ?

| redan sono efficaci ed efficienti per velocita molto alte
(V>45-50kn; Fry > 5.5 - 6) quando i fianchi sono

sempre completamente asciutti = asole piccole

La soluzione studiata € destinata a velocita minori con
fianchi frequentemente bagnati = asole grandi

Quindi grandi discontinuita delle
superfici di carena con resistenze locali
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Confronto con e senza insufflaggio

Hull Surface Pressure Coefficient

050 -044 -0.39 -033 -0.28 -0.22 -0.17 -0.11 -0.056 0.0 0.056  0.11 0.17 0.22 0.28 0.33 0.39 0.44 0.50

wetted surface
contour

Fr= 1.458
Q =20.47 Vs
Trim (CFD) = 2.21°

Minori
sovrappressioni:
acqua piu lenta

perché inizia
prima la
decelerazione

Fr= 1.458
Q=01/s (No Air) o BN T
Trim (CFD) = 1.40° TR s e

La pressione dinamica

: e Forte depressione senza
occlude il passaggio di aria

riduzione di Wy 19




Air flow cscap\ing
\

A

Fr=1.458, Q=20.47l/s

F 0{\\*ard interceptor

Velocita crescenti

Fr=0.972, Q=20.47 I/s
Portate d’aria crescenti
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Velocita crescenti 21



Inserire il filmato

See: " C Pansa - Video Presentazione 25 11 25"
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oscar
Typewriter
See: " C_Pansa - Video Presentazione 25_11_25"


Fr=1.36

i =2, 50%B; y=2 @ 1095mm;
Displacement 110.2 kg

Air flow = 0.0928 SLPM on 8 pipes

PRIN 2017, project 2017X7Z8S3 “LUBRI-SMOOTH
=7 Innovative materials and techniques for
the reduction of ship resistance

See: " C_Pansa - Video Presentazione 25 11 25"
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oscar
Typewriter
See: " C_Pansa - Video Presentazione 25_11_25"
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